题目描述
已知了飞行器的起点和终点以及n个休息站的坐标,问起点到终点的最短路径是多少?
限制:飞行器不能长期飞行,必须中途在某结点下停下休息。(即连续飞行距离应不大于m)
欧涛师兄很想在师妹面前大展身手,你能帮助他解决这个问题吗?
输入描述
第一行输入两个数,整数n和浮点数m
第二行输入六个浮点数x1,y1,z1,x2,y2,z2。分别代表起点坐标(x1,y1,z1)和终点坐标(x2,y2,z2)
紧接着下面n行,每行依次输入三个浮点数,代表休息站的坐标(ai,bi,ci),休息站编码依次为1,2……n。
输出描述
输出满足条件的起点到终点的最短距离长度(结果保留三位小数)。
依次输出飞行器经过站台的编码(休息站编码为1到n,起点编码Start,终点编码End)
若不能到达终点输出“-1”(无双引号)
示例
输入
4 5
0 0 0 6 6 0
-1 1 0
5 6 0
3 4 0
6 1 0
输出
8.606
Start 3 End
注
n<=600
代码如下:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int maxv = 610;
const int inf = 10000000;
double G[maxv][maxv];
double x[maxv],y[maxv],z[maxv];
double d[maxv];
int vis[maxv];
int n;
double m;
int pre[maxv];
void dijketra(){
fill(d,d+maxv,inf*1.0);
d[0] = 0;
for(int i = 0;i <= n+1; i++){
pre[i] = i;
}
for(int i = 0;i <= n+1; i++){
int u = -1;
double min = inf*1.0;
for(int j = 0;j <= n+1; j++){
if(!vis[j]&&d[j]<min){
u = j;
min = d[j];
}
}
if(u==-1) return;
vis[u] = 1;
for(int v = 0;v <= n+1; v++){
if(!vis[v]&&G[u][v]+d[u]<d[v]){
d[v] = G[u][v] + d[u];
pre[v] = u;
}
}
}
}
void DFS(int s,int v){
if(s==v){
printf("Start");
return;
}
DFS(s,pre[v]);
if(v==n+1){
printf(" End");
}else{
printf(" %d",v);
}
}
int main(){
scanf("%d%lf",&n,&m);
fill(G[0],G[0]+maxv*maxv,inf*1.0);
memset(vis,0,sizeof(vis));
scanf("%lf%lf%lf",&x[0],&y[0],&z[0]);
scanf("%lf%lf%lf",&x[n+1],&y[n+1],&z[n+1]);
double tempx,tempy,tempz,temp;
for(int i = 1;i <= n; i++)
scanf("%lf%lf%lf",&x[i],&y[i],&z[i]);
for(int i = 0;i <= n+1; i++){
for(int j = 0;j <= n+1; j++){
tempx = (x[i]-x[j])*(x[i]-x[j]);
tempy = (y[i]-y[j])*(y[i]-y[j]);
tempz = (z[i]-z[j])*(z[i]-z[j]);
temp = sqrt(tempx+tempy+tempz);
if(temp<=m*1.0000001&&i!=j){
G[i][j] = G[j][i] = temp;
}else if(i==j){
G[i][j] = G[j][i] = 0;
}
}
}
dijketra();
if(d[n+1]==inf*1.0){
printf("-1\n");
}else{
printf("%.3lf\n",d[n+1]);
DFS(0,n+1);
}
system("pause");
return 0;
}