用腾讯 ima 给你配一个知识大脑

不同人都有自己惯用的工具,总有人妥协对方去换一个自己不太擅长的。

AI 时代里更高效和普适的协作方式是什么?

腾讯推出的 AI 工作台「ima」,对于大部分人来讲上手难度较低。

值得站出来讲一讲,名字也好记:哎~妈~(有事找妈妈)

今天重新梳理其应用场景,便于你快速了解,让 ima 能在生活和工作中为你所用,效率加倍。

图片

图片

问题一,ima 是什么?

很多人说它是一个共享知识库,但这还不算讲人话。

往简单说是把知识重复利用起来的工具,对你已经收集的知识进行整理和取用。

就问你是不是收藏的知识从吃土到遗忘了?

ima 除了这个能力,还具备微信的天然优势-社交属性。

可以快速创建任意的主题并邀请其他人加入。

比如,你创建了一个“怎么写爆款公众号文章”的主题知识库,直接通过微信分享简直不要太符咱们的使用习惯。

最后,ima 可以获取最佳长图文内容“微信公众号”,需要深度内容支撑时,它有着绝佳优势。

没办法谁让人家的爸爸是腾讯。

当然它也并非只封闭于微信公众号,你依然可以通过它获取其它平台的内容,包括直接上传文档等。

就比如,我这套打上 deepseek 标签的北大、清华组合拳。

图片

说到这里可能还是有些模糊,直接分享几个场景,体现 ima 的功能亮点和使用方式帮助你更快的掌握它。

也欢迎在评论区大家告诉我一些你们的独家秘诀。

图片

本文使用建议:

电脑下载并打开 ima 边看我的讲解边操作一下,否则容易混乱。

地址:  https://ima.qq.com/

图片

所图所示,除了苹果手机的 APP 敬请期待。

PC端、安卓端、小程序都可以使用。

今天我拿小号给大家演示,因为这样更偏进一个新号的样子。

整体界面保持了微信一贯的风格:UI 简洁。

图片

图片

问题二,场景在哪里?

1)搜

搜=搜索,没错就是你们熟悉的搜索。

提到搜索,你们最关心两点:内容的时效性和准确性。

先说结论:ima 可以全面、准确地搜索高时效信息。

ima 不只是检索关键词,而是能够理解我们的意图,提供对应的答案。

准确的基础上,再对这些信息进行分析和整理。

ima 还能对不同来源的数据进行对比和验证,排除错误或过时的信息,从而确保我们看到的内容是最新、最可信的。

比如,我问“2024年的AI大模型能力跟2025年相比,有哪些变化?”

ima 不仅能告诉我们结论,它还会为我们标注这些信息的来源,帮我们快速溯源确定真伪。

图片

不要光看结果,其实整个页面还有非常多值得剖析的地方。

我们遵循从上到下,从左到右的逻辑进行梳理。

最上面两个按钮【基于全网】和【基于知识库】。

其实就是字面意思,你的信息来源是公开的还是你个人上传的。

上面我展示的是全网的结果。

如果是基于知识库,可以看我导入了一篇公众号文章后的状态:

图片

往下走,ima 告诉我们总结了引用了11个资料作为来源。

这里有一个隐藏的点就是 ima 后面写的【混元】代表使用的模型。

图片

如果开始忘记选择了,想默认成 deepseek R1的。

也可以切换,只需要去设置那里更改首选【大模型】。

图片

可以注意到,下方还有几个按钮,我们从左向右的介绍。

【深度研究】和【生成脑图】

先看深度研究的效果:

图片

图片

第二张图,上面有一行灰色的字体“你可能感兴趣”。

看到这里的时候,那何止是可能?是太感兴趣了!!

太渴望看到AI在各行各业的实质性应用了。

咽一下口水,咱们回到【生成脑图】。

图片

把所有信息按照逻辑层级展现出来,让我们一目了然。

这意味着,无论是写报告还是做决策,都可以借助 ima 在短时间内掌握主题的全貌和核心细节。

有了完善的搜索结果以后,我们依旧可以和 ima 连续对话,它可以动态调整搜索策略,进一步细化结果。

其实,在这两个按钮的右边还有3个小按钮不要忽略。

图片

分别是,记笔记、复制和反馈。

先讲记笔记:

1、把刚才搜的内容记录成笔记;

2、有一个笔记的使用指南,不会用就看它。

图片

复制就是你们理解的复制。

反馈就是你希望这个产品变得更好(不满意的时候点起来)

图片

最后模型会自动帮你思考3个潜在问题供你使用:

图片

到这里还没完,聊天还有两个按钮。

1、上传文件:最多10个,格式支持PDF、DOC、JPEG、PNG

2、截图问答:甚至可以把你刚才的答案截图再问它。

图片

图片

还剩下最后一个按钮,在最最右边

图片

把这篇搜索结果添加到知识库里。

图片

搜索+知识库。

如果忘记将某些关键信息保存到知识库中也没关系,ima 客户端提供的【历史记录】功能会自动记录每一次搜索操作。

这样,我们可以随时查找遗漏的信息或早前的草稿版本,无需重复机械化的搜索过程。

图片

第一部分,【搜】就全部讲完了。

别急~下面就讲知识库。

图片

2)建 (你熟悉的东西)

建=建立知识的仓库。

你问我为啥非要搞个知识库?这多麻烦呀。

1、巩固某个领域的知识,完善知识体系

2、通过写作,提高个人表达能力

3、提升个人影响力,让知识复利、变现

因为完成资料收集后,你不希望每次要用有关信息的时候,都要反复提问同一个问题。

而且时间久了,你当初问的好问题甚至都忘记了。

最好的记忆就是创建一个关于XX主题的记忆标签。

这就是我们要在 ima 里创建一个知识库,将之前的相关信息整合到知识库,搭建成清晰的参考框架。

通过这种方式,我们能够在短时间内完成从信息筛选到初步内容构建的过程,为后续的分析、钻研主题和文章撰写打下坚实基础。

图片

看到这里提问党,最爱问两个问题:

1、这个知识库多大?

都在下面这张图上,我劝你淡定,大概率以后钱可以解决容量。

图片

2、安全不?直接上官方回答。

图片

图片

怎样把碎片化的知识整理成结构化的体系?怎样搭建出这样一个结构清晰,好用的知识库?

听过 @Leam 老师的分享,今天拿出来一起学习。

1)了解知识库与知识体系  

2)从读者视角看知识库  

3)确定领域,搭建框架  

4)收集、记录、输出、完善

如何搭建知识体系?分享三种常用的方法,今天讲的是第三种:

持续输出:文章/视频/播客等形式,分享领域的见解;

打造课程:以课程形式,体系化地帮身边人解决问题;

搭建知识库:记录自己的学习和解决问题的过程。

优秀的个人知识库是什么样子?

不限定文章形式,只要围绕个人学习或使用为目标,借助知识管理的手段把信息从无序到有序。

针对某领域输出,形成一个解决某问题合集,就是好的个人知识库。

最终的目的,是为你所用,是为了帮助自己或他人变好。

而所有慢慢变好的背后,就是知识体系逐渐丰富,并有了显性结果的过程。

读者眼中的知识库,通常有 3 个层级:

1、你的知识库,能让“我”变成什么样子?

2、为了成为那个样子,“我”要学习什么?

3、“我”要学习哪些具体的知识点?

图片

知识库的主题,可以从你学习的领域中挑选。

不知道该聚焦什么领域,有一些通用的方法,帮你探索:

专业技能:你做得很好的地方,别人不一定做得好;

生活困惑:对你的生活产生困扰的,比如提升专注,习惯培养等;

工作提升:以职业发展为主,工作效率,升职加薪;

内心热爱:过去、未来持续热爱,比如写作、知识管理。

学会建立标签:“#标签名”,比如建立这 4 个领域。

如何收集?

打造高质量的信息源,是丰富知识库的关键一步。

关注 3 种信息源:

日常生活和工作遇到的困惑;

阅读、与人交流、当日灵感;

收藏文章,朋友推荐的资料。

从知识库搭建角度出发,希望记录的内容未来能用的上,通常还可以记录这些信息:

有启发的观点

在日常生活/学习中,有过类似经历而被触动的观点,让你有感而发,是很好的文章素材,可以作为他人学习的养料。

有帮助的方法

逻辑清晰的方法,是知识库的宝藏,也是别人愿意为你的内容付费的素材。

比如,一篇关于如何搭建知识库的笔记。

最真实的情绪

日常的随想,情绪上的波动,也可以作为知识库的成长故事进行策展。

有两个好处:

一个是作为排解日常苦闷的工具,打开笔记工具,不带有任何目的的去写,有时候也能产出非常多令人意外的文字。

二是记录自己日常想法作为灵感源泉。

当你积累了足够多的素材之后,将所有搜罗到的资讯添加到个人知识库中,这里就成了永久储备、随时调阅的知识根据地。

有了 ima 之后,只要在个人知识库输入问题,AI 就会自动搜索知识库里的全部笔记,并立刻给出答案。

ima 还有个小优点,那就是它在 AI 归纳观点的同时会在每段后面标注出处,点击即可跳转至对应的原始片段。

当记录的信息越来越多,难免陷入笔记庞杂、不知如何分类、记了又用不上的困境,可以试试这两个方法:

用自己的话记笔记

笔记按“#领域/阶段”分类

图片

文档导入

值得一讲的是公众号的导入

1、公众号底部的【分享】按钮

2、在小程序工具中打开

3、选择 ima 知识库

4、给上传的资料打标签

图片

图片

图片

图片

图片

当然更多时候,可能值得上传的是一手资料。

比如高质量论文、期刊。

有时候论文基本都是 PDF 或者 Word 文档,阅读门槛比网络文章更高,篇幅也往往更长。

ima 支持导入外部文档,常见的 PDF、Word 乃至图片都没问题。

图片

图片

文档共享

它不仅可以建立个人知识库,还能创建共享知识库。

上传主题相关全部文档,将一个人的研究成果变成一群人的共识。

两种分享方式:

1、复制链接

2、生成二维码

图片

当然了,你可以把自我介绍做成一个PDF也放进去拿去传播。

图片

ima 的知识库还有一些很实用的细节功能:

其一,ima 会为每个文档自动生成摘要,只要悬浮鼠标就能查看,这本身就方便在有大量文档的情况下快速定位。

其二,知识库支持多种权限设置,包括成员加入是否需确认、是否可查看文件具体内容等。

如果我们日后将知识库分享给外部群体查阅,查看群成员和申请。

这是非常方便的。

图片

图片

第二部分,【建】就全部讲完了。

图片

开启第三部分之前,有一个关键议题:

记笔记跟建知识库的关系是什么?

记笔记往往是一个陌生东西变成为你所用的东西。

建知识库就是把为你所用的东西全部汇总起来方便解决一个主题。

举个例子:

我看一篇关于“字节跳动 AI 编程产品 Trae”的文章。

记成了一篇笔记。

而AI编程才是我研究的主题,这篇笔记是它的分支。

我可以称之为国内好用的AI编程产品。

但还有国外的 Cursor 、Claude code 这种代表性的产品。

可以带这个疑问看第三部分,为啥会提到阅读之后记笔记?

### 腾讯 IMA 底层技术架构及原理 腾讯 IMA 的底层技术实现主要依赖于腾讯多年积累的大规模数据处理能力以及先进的自然语言处理技术和多模态学习框架。以下是对其核心技术架构和原理的具体分析: #### 1. 数据驱动的知识引擎 腾讯 IMA 的核心之一是一个强大的知识引擎,该引擎能够高效地处理海量的技术文档和其他形式的数据[^1]。通过这种大规模的数据处理能力,IMA 可以为用户提供精准的信息检索服务,并支持 API 的深度集成。 #### 2. 大模型的应用与优化 在实际开发过程中,大模型被广泛应用于各种场景下的任务解决。尽管具体到 IMA 的内部结构可能并未完全公开,但从已有资料可以推测,它采用了类似于 Transformer 架构的预训练模型来完成复杂的语义理解和生成任务[^2]。这些模型经过大量无标注文本的自监督学习后,在特定领域进一步微调以适应具体的业务需求。 #### 3. 智能办公中的关键技术——知识流动化 为了实现更高效的智能办公体验,“知识流动化”成为了 ima.copilot 设计的重要理念之一[^3]。这意味着系统不仅限于简单的问答功能,而是致力于构建一个完整的生态系统,在这个系统里,所有的信息都能够无缝连接并动态更新。例如,当某个员工提交了一份新的报告或者修改了一段代码之后,其他相关人员都可以即时获取最新版本的内容摘要及其关联背景材料。 #### 4. 生态系统的融合与发展展望 随着 AI 技术不断进步,预计在未来几年内(如至2025年),像 ima 这样的智能化工具将会更加深入地融入人们的日常工作流程当中,成为不可或缺的一部分。它们不仅能显著提高个体工作者的任务执行速度与质量,还能促进跨部门之间的沟通合作效率提升。 ```python # 示例:假设这是用于模拟简单版知识提取过程的一个小型脚本 from transformers import pipeline nlp = pipeline('question-answering') context = """ The knowledge engine of Tencent's large model processes massive amounts of data efficiently. """ question = "What does the knowledge engine process?" result = nlp({ 'question': question, 'context': context }) print(result['answer']) ``` 以上代码片段展示了如何利用 Hugging Face 提供的 `transformers` 库快速搭建起基于预训练模型的问题解答程序。这只是一个非常基础的例子,而真正工业级的产品则需要考虑更多复杂因素比如性能优化、安全性保障等方面。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呱牛 do IT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值