腾讯ima知识库,重新定义知识管理!1个动作收纳99%碎片知识,打造个人第二大脑

将复杂的产品简单化是产品设计和技术开发中的核心理念,其本质是通过优化功能逻辑、降低使用门槛来提升用户体验与系统效能。

腾讯在这方面的功夫一向不让人失望,腾讯很多的产品都是跟随者战略,但跟随性的产品总能脱颖而出,用户体验、简单性以及强大的生态流量验证是其产品取胜的关键。

今天分享的ima知识库,是腾讯混元大模型团队在2024年四季度推出的智能工作台产品,它同样具备这样的特质。

图片

刚刚使用ima,感觉是简洁版的语雀。深度体验了ima知识库的功能后,感觉ima的用户体验更好,目前也没有收费限制。考虑将知识库从语雀迁移到ima上来,但也存在一些功能使用上的不便捷,项目团队应该还在快马加鞭地迭代中。


01 

ima是什么?新一代AI知识管理工具

ima(全称ima.copilot)由腾讯混元大模型提供技术底座,并融合DeepSeek-R1双引擎驱动,支持多模型交互。其核心创新在于将RAG(检索增强生成)技术与个人知识库结合,通过向量化存储和实时检索,为通用大模型添加“记忆”,形成动态优化的知识体系。随着用户使用频率增加,知识库会不断学习,最终成为用户的“第二大脑”。

ima的定位是会思考的知识库,开启搜读写新体验。知识库分为个人知识库和共享知识库,2025年3月7日,ima上线“知识库广场”,共享知识库可发布到广场中。ima知识库适用于个人知识管理、专业领域研究及团队协作场景,是当前AI技术落地的高效工具。

ima目前提供了ima已经上线了电脑端(含Mac、Windows)、移动端App(安卓、iOS)和“ima知识库”小程序。可通过官网(https://ima.qq.com)下载客户端。


02 

ima核心功能模块

图片

1. 知识管理

全场景知识库构建  支持Windows、Mac、小程序及App多端实时同步,提供2G免费云存储(可扩展至无限容量)。用户可通过微信聊天文件、公众号文章、本地文档(PDF/Word等)一键导入,并自动进行结构化解析。

动态知识图谱  开启“边问边记”模式,问答过程中自动保存关键内容,形成可追溯的知识网络。

2. 智能问答与创作

多模式问答

【搜】基于全网:整合腾讯生态内容(如微信公众号文章)及全网信息,提供高质答案;

【读】基于知识库:结合用户上传的文档、笔记等个性化数据生成精准回答,支持深度研究模式生成结构化脑图。

【写】智能写作辅助:提供论文、文案(朋友圈/小红书)、作文(覆盖中小学)等模板,支持扩写、缩写、翻译及思维导图生成,创作中可随时输入“/”调用AI辅助。

3. 协作与共享

共享知识库  可创建团队知识库,支持百万级成员协作(原上限5人,2025年3月升级后突破限制),管理员可设置权限(如问答次数限制、内容可见性审批),确保安全性。

知识库广场  用户可将知识库发布至公共空间(不占用个人存储),涵盖法律、教育、政策等垂直领域,形成开放知识生态。

这里我整理了ima目前版本的功能全景,可以对ima有个全面的了解。

图片


03 

开启知识收集的新方式

我们会经常遇到下面的痛点:

👉 微信收藏夹堆成山,却永远找不到那篇关键文章

👉 电脑文件散落如迷宫,搜文件名比解谜游戏还难

👉 团队协作时版本混乱,文档在群里「流浪」到崩溃

👉 AI问答总在「胡说八道」,专业资料用不上、记不住

善用IMA知识库之后,上面的问题都会迎刃而解。

微信生态深度打通

ima与微信深度打通,使用ima移动端或者ima知识库小程序,可以将微信聊天中的文件上传到知识库。

操作如下:

知识库-个人知识库-添加(微信文件)-选择聊天-选择文件-确认导入。

图片

导入的微信文件(如PDF、PPT)会被AI自动提取核心内容,生成摘要标签,支持后续模糊搜索。例如输入「上周李总发的合同」,即使忘记文件名也能精准定位。

多格式暴力解析:PDF、Word、PPT、图片、语音、网页链接,甚至手写板书照片,ima都能识别并结构化存储。

图片问答:上传图片后,可以对话解读图片,也可以精准提取图片中的文字。


04 

八大「开挂」场景,重新定义工作流

📚 教育革命:教师数字化转型引擎

5分钟极速备课:混元模型提取3篇推文核心数据,DeepSeek生成带动态图表的教学PPT。

作文智能批改:手机拍摄50份手写作文,AI识别潦草字迹,标记论据雷同与逻辑断层。

⚖️ 法律行业:案例库的「超级外脑」

判决书秒级定位:构建「刑事案例库」,输入「正当防卫认定标准」,AI提取关键判例与法条依据。

合同条款审查:上传合同文本,AI自动标注风险条款,生成修订建议与替代方案。

💼 企业效能:从信息孤岛到智慧中枢

竞品监控台:自动抓取行业报告、财报数据,生成可视化对比仪表盘,支持多维度钻取分析。

智能客服升级:搭建「产品知识库」,用户提问时AI精准调取最新技术文档与售后政策。

📈 科研攻坚:论文生产的「加速器

文献综述神器:上传50篇CNKI论文,DeepSeek生成热点演进图谱,混元润色学术语言。

实验数据洞察:导入实验记录,AI自动关联相关理论模型,预测下一步研究方向。

🎨 创意产业:内容生产的「永动机」

短视频脚本库:收藏爆款视频链接,AI拆解分镜逻辑,生成带BGM建议的脚本模板。

设计素材库:上传PPT需求文档,自动生成配色方案+图标库,省去2小时素材搜寻。

🔥 知识共享经济:普通人也能「躺赚」

知识库广场:加入「法律案例库」「行业报告库」等公共库,免费调用专业资源。

创作者联盟:上传原创知识库可获得影响力指数,开启变现通道。

🚀 团队协作

• 共享资料库:教师共享课程资料库,企业建立行业报告库,实现知识沉淀与复用。

• 指纹级权限管理:支持审批加入、内容查看限制,比银行金库更安全。

🎓 学生党逆袭秘籍

• 错题本自动化:上传试卷截图,AI归类错题类型,生成考点清单与专项训练计划。

• 外语学习外挂:划词触发「AI导师」,讲解语法难点+拓展文化背景。


05 

ima数据和隐私安全

ima项目团队对于数据和隐私安全说明如下:

ima将知识库数据存储在云端而非本地,主要基于以下考量:方便多设备同步与写作;调用云端AI能力深度整合;在线获取线上内容;降低本地配置使用难度。

云端服务器对存储数据加密保证用户隐私,加密手段包括精细化权限控制,传输加密,存储加密等,确保数据端到端全链路安全。数据存储采用腾讯云存储COS服务,采用分布式存储和自动化副本,防止数据丢失。

用户上传或者个人知识库中的资料不会被用于AI模型的训练。不同用户个人数据库中的数据属于隔离状态,A用户数据不会被用于B用户的问答。DeepSeek模型为私有化部署方案,使用DeepSeek模型产生的数据,不会回传到DS所属公司深度求索。

尽管,腾讯对数据和隐私安全有足够的保障措施,但对于高保密的信息还是慎用。不过,对于个人而言,足够了。


ima作为腾讯出品的产品,与微信生态深度打通,使用ima知识库管理知识,可以大大提高沉淀知识的管理和使用。

信息爆炸时代,IMA不是让你更卷——而是把1小时活干出8小时效能,把人生浪费在真正美好的事物上!  

人生苦短,快用IMA!🔥

————————

Hi,我是阿信,一名AI创业者,产品经理人。拥抱AI,从现在做起。阿信AI实验室将记录我的AI成长之路、AI创富之路,欢迎关注。

关注阿信AI实验室,领取清华DeepSeek系列资料:

《DeepSeek从入门到精通》、

《DeepSeek如何赋能职场应用》、

《普通人如何抓住DeepSeek红利》

《DeepSeek+DeepResearch让科研像聊天一样简单》

《DeepSeek与AI幻觉》,以及

《AI工具大礼包》(各项AI工具集合会不断更新)

### 实现 DeepSeek 创建个人知识库 为了在本地环境中成功创建并运行基于 DeepSeek 的个人知识库,需遵循一系列配置与操作流程。 #### 安装依赖环境 首先,确保 Python 版本兼容性至关重要。推荐使用 Conda 虚拟环境来管理项目所需的软件包版本。具体命令如下所示: ```bash conda create -n deepseek python=3.10 conda activate deepseek ``` 这一步骤能够建立一个名为 `deepseek` 的新虚拟环境,并指定 Python 3.10 作为解释器版本[^2]。 #### 配置 DeepSeek 和 Dify 平台集成 完成上述准备工作之后,下一步就是将 DeepSeek 整合至支持私有化部署的 Dify 开发平台之中。这种做法不仅有助于保护敏感资料的安全性和隐私权,同时也允许开发者利用更加强大且灵活的功能集去定制专属的人工智能应用程序[^1]。 #### 添加本地知识库的具体方法 对于希望进一步扩展应用能力的企业或个人而言,在已有的基础上加入自定义知识源是一项非常有价值的工作。通常情况下,此过程涉及以下几个方面: - **准备结构化的数据文件**:可以是以 CSV 或 JSON 格式的文档集合; - **编写适配接口程序**:用于解析外部输入的数据格式并与内部存储机制相匹配; - **执行索引更新动作**:每当新增加一批条目时都需要重新计算其对应的检索向量; 请注意,实际编码细节会依据所选技术栈的不同而有所差异。然而,总体思路保持一致——即始终围绕着提高系统的智能化水平以及增强用户体验展开设计思考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿信AI实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值