tensorflow分为CPU版和GPU版,GPU版处理速度快很多,如果电脑中有NVIDIA的GPU,建议安装tensorflowGPU版
安装教程,windows用户可直接pip
pip install tensorflow # 会直接安装CPU版
pip install tensorflow-gpu # 安装GPU版
安装好了以后来练习一下机器学习一个函数方程Y = 0.1X + 0.3
首先创建数据
x_data = np.random.rand(100).astype(np.float32) # 创建100个类型为float32的随机数
y_data = x_data*0.1 + 0.3
设置权重和偏置
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) # 权重,均匀分布[min,max)
biases = tf.Variable(tf.zeros([1])) # 偏置
tf.random_uniform函数和tf.zeros函数具体用法在我的博客中有具体描述。
接下来定义预测的Y轴坐标,并计算预测的和实际的误差值loss
y = Weights*x_data + biases # 预测的Y
loss = tf.reduce_mean(tf.square(y-y_data)) # 预测的Y和实际的差别
神经网络建立优化器并减少误差loss
optimizer = tf.train.GradientDescentOptimizer(0.5) # 神经网络建立优化器‘0.5’为学习效率
train = optimizer.minimize(loss) # 使用优化器来减少误差
初始化变量并运行
init = tf.global_variables_initializer() # 初始化变量
sess = tf.Session() # Session。run()用来运行
sess.run(init) # 运行init
每隔20次查看一次学习结果
for step in range(301):
sess.run(train) # 运行train
if step % 20 == 0:
print(step, sess.run(Weights), sess.run(biases))
运行结果
可以看出Weight和biases无限接近0.1和0.3