最小二乘法公式推导

最小二乘法(Least Squares Method)是一种用于寻找最佳拟合数据集的线性模型的方法。它通过最小化观测值与模型预测值之间的误差平方和来找到最优参数。以下是针对简单线性回归模型 y = w x + b y=wx+b y=wx+b 的最小二乘法推导过程。
该方法常用来进行直线的拟合,以下以该应用来说明:
样本数据为: ( x 1 , y 1 ) ( x 2 , y 2 ) . . . ( x n , y n ) (x_1,y_1)(x_2,y_2)...(x_n,y_n) (x1,y1)(x2,y2)...(xn,yn)
* 最小化残差平方和(Residual Sum of Squares, RSS)来估计回归系数: L = ∑ i = 1 n ( y i − w x i − b ) 2 \mathcal{L}=\sum_{i=1}^n(y_i-wx_i-b)^2 L=i=1n(yiwxib)2
* 分别对 w w w b b b 进行一阶求偏导过程如下:

∂ L ∂ w = ∑ i = 1 n − 2 x i ( y i − b − w x i ) = − 2 ∑ i = 1 n x i ( y i − b − w x i ) = − 2 ( ∑ i = 1 n x i y i − ∑ i = 1 n b x i − ∑ i = 1 n w x i 2 ) = − 2 ( ∑ i = 1 n x i y i − n b x ˉ − w ∑ i = 1 n x i 2 ) ∂ L ∂ b = ∑ i = 1 n − 2 ( y i − b − w x i ) = − 2 ∑ i = 1 n − 2 ( y i − b − w x i ) = − 2 ( ∑ i = 1 n y i − ∑ i = 1 n b − ∑ i = 1 n w x i ) = − 2 ( n y ˉ − n b − n w x ˉ ) = − 2 ( y ˉ − b − w x ˉ ) \frac{\partial\mathcal{L}}{\partial\mathcal{w}}=\sum_{i=1}^n-2x_i(y_i-b-wx_i) \\ =-2\sum_{i=1}^nx_i(y_i-b-wx_i) \\ =-2(\sum_{i=1}^nx_iy_i-\sum_{i=1}^nbx_i-\sum_{i=1}^nwx_i^2) \\ =-2(\sum_{i=1}^nx_iy_i-nb\bar{x}-w\sum_{i=1}^nx_i^2) \\ \frac{\partial\mathcal{L}}{\partial\mathcal{b}}=\sum_{i=1}^n-2(y_i-b-wx_i) \\ =-2\sum_{i=1}^n-2(y_i-b-wx_i) \\ =-2(\sum_{i=1}^ny_i-\sum_{i=1}^nb-\sum_{i=1}^nwx_i) \\ =-2(n\bar{y}-nb-nw\bar{x}) \\ =-2(\bar{y}-b-w\bar{x}) wL=i=1n2xi(yibwxi)=2i=1nxi(yibwxi)=2(i=1nxiyii=1nbxi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值