spark-note

import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.types._
import spark.implicits._
import org.apache.spark.sql.functions.udf

import org.apache.spark.sql._


object Run {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("test").setMaster("local")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
val sqlContext = new SQLContext(sc)

/**
* id age
* 1 30
* 2 29
* 3 21
*/
case class Person(id: Int, age: Int)
val idAgeRDDPerson = sc.parallelize(Array(Person(1, 30), Person(2, 29), Person(3, 21)))

// 优点1
// idAge.filter(_.age > "") // 编译时报错, int不能跟String比

// 优点2
idAgeRDDPerson.filter(_.age > 25) // 直接操作一个个的person对象
}
}


val spark = SparkSession
.builder()
.appName("SparkSessionZipsExample")
.config("spark.sql.warehouse.dir", warehouseLocation)
.enableHiveSupport()
.getOrCreate()


-------------------------------------
scala> val numDS = spark.range(5, 100, 5)
numDS: org.apache.spark.sql.Dataset[Long] = [id: bigint]

scala> numDS.orderBy(desc("id")).show(5)
+---+
| id|
+---+
| 95|
| 90|
| 85|
| 80|
| 75|
+---+
only showing top 5 rows

scala> numDS.describe().show()
+-------+------------------+
|summary| id|
+-------+------------------+
| count| 19|
| mean| 50.0|
| stddev|28.136571693556885|
| min| 5|
| max| 95|
+-------+------------------+
scala> val langPercentDF = spark.createDataFrame(List(("Scala", 35),
| ("Python", 30), ("R", 15), ("Java", 20)))
langPercentDF: org.apache.spark.sql.DataFrame = [_1: string, _2: int]

scala> val lpDF = langPercentDF.withColumnRenamed("_1", "language").withColumnRenamed("_2", "percent")
lpDF: org.apache.spark.sql.DataFrame = [language: string, percent: int]

scala> lpDF.orderBy(desc("percent")).show(false)
+--------+-------+
|language|percent|
+--------+-------+
|Scala |35 |


hadoop 状态查看地址:http://192.168.1.101:8088/
spark 状态查看地址:http://192.168.1.101:8082/
### 回答1: Spark 基础环境是指安装和配置 Spark 所需的软件和硬件环境。Spark 运行需要 Java 环境和 Hadoop 环境,同时也需要配置 Spark 的相关参数,如内存大小、CPU 核数等。在安装和配置好基础环境后,我们才能使用 Spark 进行数据处理和分析。 ### 回答2: Spark是一个快速、可扩展且容错的大数据处理框架,提供了丰富的API和工具,可以处理大规模的数据集。 搭建Spark基础环境包括以下几个步骤: 1. 安装Java:Spark是基于Java开发的,因此首先需要安装Java开发环境。可以从Oracle官网下载并安装适合操作系统的Java版本。 2. 下载Spark:在Apache Spark官网下载最新版本的Spark压缩包,并解压到指定目录。 3. 配置环境变量:将Spark的bin目录添加到系统的环境变量中。这样可以方便地在任意位置运行Spark的命令。 4. 配置Spark集群:如果需要在多台机器上运行Spark应用程序,需要进行集群配置。首先,在每台机器上安装好Java,并将Spark解压到相同的目录。然后,编辑Spark的配置文件,设置集群的主节点和从节点。 5. 验证安装:通过在终端运行spark-shell命令,验证Spark是否正确安装。spark-shell命令会启动一个Scala解释器,并连接到Spark集群。 6. 运行第一个Spark应用程序:编写一个简单的Spark应用程序,如WordCount,用于统计文本文件中单词的个数。将程序保存为Scala文件,并使用spark-submit命令来运行。 以上就是搭建Spark基础环境的主要步骤。搭建好Spark环境后,可以使用Spark提供的丰富API和工具来进行大数据处理和分析,如数据清洗、转换、机器学习等。Spark的功能强大且易于使用,适用于各种大规模数据处理场景。 ### 回答3: Spark是一个快速通用的集群计算系统,它提供了高效的数据处理和分析能力。要运行Spark,我们需要配置和搭建一些基础环境。 首先,我们需要安装Java JDK。Spark运行在Java虚拟机上,因此我们需要安装适当版本的Java开发工具包。通常建议使用Oracle JDK的最新稳定版本,然后设置JAVA_HOME环境变量。 其次,我们需要安装Spark本身。Spark官方网站提供了预编译的二进制发行版,我们可以从网站上下载并解压缩到我们喜欢的位置。然后,我们可以设置SPARK_HOME环境变量,以便在终端窗口中使用Spark命令。 接下来,我们需要选择一个合适的集群管理器来运行Spark应用程序,比如Standalone模式、Hadoop YARN和Apache Mesos等。我们需要根据自己的需求进行选择和配置。例如,在Standalone模式下,我们需要启动一个Spark Master和多个Spark Worker来管理和运行任务。 最后,在运行Spark应用程序之前,我们需要通过编写一个Spark应用程序来使用Spark的功能。Spark提供了Java、Scala和Python等多种编程语言的API。我们可以使用任何一种编程语言来编写应用程序并在Spark上运行。 总之,Spark基础环境搭建包括安装Java JDK、安装Spark本身、选择和配置集群管理器,以及编写Spark应用程序。搭建好这些基础环境后,我们就可以开始使用Spark进行快速、高效的集群计算了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值