10_大数据之spark_note

spark

1 Spark概述

Spark最初由美国加州伯克利大学(UCBerkeley)的AMP实验室于2009年开发,是基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序

2013年Spark加入Apache孵化器项目后发展迅猛,如今已成为Apache软件基金会最重要的三大分布式计算系统开源项目之一(Hadoop、Spark、Storm)

Spark在2014年打破了Hadoop保持的基准排序纪录
Spark/206个节点/23分钟/100TB数据
Hadoop/2000个节点/72分钟/100TB数据
Spark用十分之一的计算资源,获得了比Hadoop快3倍的速度

Spark具有如下几个主要特点:

  • 运行速度快:使用DAG执行引擎以支持循环数据流与内存计算
  • 容易使用:支持使用Scala、Java、Python和R语言进行编程,可以通过Spark Shell进行交互式编程
  • 通用性:Spark提供了完整而强大的技术栈,包括SQL查询、流式计算、机器学习和图算法组件
  • 运行模式多样:可运行于独立的集群模式中,可运行于Hadoop中,也可运行于Amazon EC2等云环境中,并且可以访问HDFS、Cassandra、HBase、Hive等多种数据源

Spark如今已吸引了国内外各大公司的注意,如腾讯、淘宝、百度、亚马逊等公司均不同程度地使用了Spark来构建大数据分析应用,并应用到实际的生产环境中
在这里插入图片描述

Scala简介

Scala是一门现代的多范式编程语言,运行于Java平台(JVM,Java 虚拟机),并兼容现有的Java程序

Scala的特性:

  • Scala具备强大的并发性,支持函数式编程,可以更好地支持分布式系统
  • Scala语法简洁,能提供优雅的API
  • Scala兼容Java,运行速度快,且能融合到Hadoop生态圈中

Scala是Spark的主要编程语言,但Spark还支持Java、Python、R作为编程语言
Scala的优势是提供了REPL(Read-Eval-Print Loop,交互式解释器),提高程序开发效率

Spark与Hadoop的对比

Hadoop存在如下一些缺点:

  • 表达能力有限
  • 磁盘IO开销大
  • 延迟高
  • 任务之间的衔接涉及IO开销
  • 在前一个任务执行完成之前,其他任务就无法开始,难以胜任复杂、多阶段的计算任务

Spark在借鉴Hadoop MapReduce优点的同时,很好地解决了MapReduce所面临的问题,相比于Hadoop的MapReduce,Spark主要具有如下优点:

  • Spark的计算模式也属于MapReduce,但不局限于Map和Reduce操作,还提供了多种数据集操作类型,编程模型比Hadoop MapReduce更灵活

  • Spark提供了内存计算,可将中间结果放到内存中,对于迭代运算效率更高

  • Spark基于DAG的任务调度执行机制,要优于Hadoop MapReduce的迭代执行机制

Hadoop与Spark的执行流程对比

在这里插入图片描述

使用Hadoop进行迭代计算非常耗资源
Spark将数据载入内存后,之后的迭代计算都可以直接使用内存中的中间结果作运算,避免了从磁盘中频繁读取数据

Hadoop与Spark执行逻辑回归的时间对比:

在这里插入图片描述


2 Spark生态系统

在实际应用中,大数据处理主要包括以下三个类型:

  • 复杂的批量数据处理:通常时间跨度在数十分钟到数小时之间(MapReduce)

  • 基于历史数据的交互式查询:通常时间跨度在数十秒到数分钟之间(impala)

  • 基于实时数据流的数据处理:通常时间跨度在数百毫秒到数秒之间(storm)

当同时存在以上三种场景时,就需要同时部署三种不同的软件
比如: MapReduce / Impala / Storm

这样做难免会带来一些问题:

  1. 不同场景之间输入输出数据无法做到无缝共享,通常需要进行数据格式的转换
  2. 不同的软件需要不同的开发和维护团队,带来了较高的使用成本
  3. 比较难以对同一个集群中的各个系统进行统一的资源协调和分配

Spark的设计遵循“一个软件栈满足不同应用场景”的理念,逐渐形成了一套完整的生态系统
既能够提供内存计算框架,也可以支持SQL即席查询、实时流式计算、机器学习和图计算等
Spark可以部署在资源管理器YARN之上,提供一站式的大数据解决方案
因此,Spark所提供的生态系统足以应对上述三种场景,即同时支持批处理、交互式查询和流数据处理

Spark生态系统已经成为伯克利数据分析软件栈BDAS(Berkeley Data Analytics Stack)的重要组成部分

在这里插入图片描述

Spark的生态系统主要包含了Spark Core、Spark SQL、Spark Streaming、MLLib和GraphX 等组件

Spark生态系统组件的应用场景:

应用场景时间跨度其他框架Spark生态系统中的组件
复杂的批量数据处理小时级MapReduce、HiveSpark
基于历史数据的交互式查询分钟级、秒级Impala、Dremel、DrillSpark SQL
基于实时数据流的数据处理毫秒、秒级Storm、S4Spark Streaming
基于历史数据的数据挖掘-MahoutMLlib
图结构数据的处理-Pregel、HamaGraphX

3 Spark运行架构

3.1 基本概念

  • RDD:是Resillient Distributed Dataset(弹性分布式数据集)的简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型
  • DAG:是Directed Acyclic Graph(有向无环图)的简称,反映RDD之间的依赖关系
  • Executor:是运行在工作节点(WorkerNode)的一个进程,负责运行Task
  • Application:用户编写的Spark应用程序
  • Task:运行在Executor上的工作单元
  • Job:一个Job包含多个RDD及作用于相应RDD上的各种操作
  • Stage:是Job的基本调度单位,一个Job会分为多组Task,每组Task被称为Stage,或者也被称为TaskSet,代表了一组关联的、相互之间没有Shuffle依赖关系的任务组成的任务集

3.2 架构设计

Spark运行架构包括集群资源管理器(Cluster Manager)、运行作业任务的工作节点(Worker Node)、每个应用的任务控制节点(Driver)和每个工作节点上负责具体任务的执行进程(Executor)
资源管理器可以自带或Mesos或直接使用YARN

与Hadoop MapReduce计算框架相比,Spark所采用的Executor有两个优点:

  • 一是利用多线程来执行具体的任务,减少任务的启动开销
  • 二是Executor中有一个BlockManager存储模块,会将内存和磁盘共同作为存储设备,有效减少IO开销

Spark运行架构

在这里插入图片描述

一个Application由一个Driver和若干个Job构成,一个Job由多个Stage构成,一个Stage由多个没有Shuffle关系的Task组成
当执行一个Application时,Driver会向集群管理器申请资源,启动Executor,并向Executor发送应用程序代码和文件,然后在Executor上执行Task,运行结束后,执行结果会返回给Driver,或者写到HDFS或者其他数据库中

在这里插入图片描述

3.3 Spark运行基本流程

Spark运行基本流程图

在这里插入图片描述

(1)首先为应用构建起基本的运行环境,即由Driver创建一个SparkContext,进行资源的申请、任务的分配和监控

(2)资源管理器为Executor分配资源,并启动Executor进程

(3)SparkContext根据RDD的依赖关系构建DAG图,DAG图提交给DAGScheduler解析成Stage,然后把一个个TaskSet提交给底层调度器TaskScheduler处理;Executor向SparkContext申请Task,Task Scheduler将Task发放给Executor运行,并提供应用程序代码

(4)Task在Executor上运行,把执行结果反馈给TaskScheduler,然后反馈给DAGScheduler,运行完毕后写入数据并释放所有资源

3.4 Spark-RDD运行原理

3.4.1.设计背景

许多迭代式算法(比如机器学习、图算法等)和交互式数据挖掘工具,共同之处是,不同计算阶段之间会重用中间结果
目前的MapReduce框架都是把中间结果写入到HDFS中,带来了大量的数据复制、磁盘IO和序列化开销
RDD就是为了满足这种需求而出现的,它提供了一个抽象的数据架构,我们不必担心底层数据的分布式特性,只需将具体的应用逻辑表达为一系列转换处理,不同RDD之间的转换操作形成依赖关系,可以实现管道化,避免中间数据存储

3.4.2.RDD概念

一个RDD就是一个分布式对象集合,本质上是一个只读的分区记录集合,每个RDD可分成多个分区,每个分区就是一个数据集片段,并且一个RDD的不同分区可以被保存到集群中不同的节点上,从而可以在集群中的不同节点上进行并行计算
RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,不能直接修改,只能基于稳定的物理存储中的数据集创建RDD,或者通过在其他RDD上执行确定的转换操作(如map、join和group by)而创建得到新的RDD

RDD提供了一组丰富的操作以支持常见的数据运算分为“动作”(Action)和“转换”(Transformation)两种类型
RDD提供的转换接口都非常简单,都是类似map、filter、groupBy、join等粗粒度的数据转换操作,而不是针对某个数据项的细粒度修改(不适合网页爬虫)
表面上RDD的功能很受限、不够强大,实际上RDD已经被实践证明可以高效地表达许多框架的编程模型(比如MapReduce、SQL、Pregel)
Spark用Scala语言实现了RDD的API,程序员可以通过调用API实现对RDD的各种操作

RDD典型的执行过程如下:

  1. RDD读入外部数据源进行创建

  2. RDD经过一系列的转换(Transformation)操作,每一次都会产生不同的RDD,供给下一个转换操作使用

  3. 最后一个RDD经过“动作”操作进行转换,并输出到外部数据源

这一系列处理称为一个Lineage(血缘关系),即DAG拓扑排序的结果
优点:惰性调用、管道化、避免同步等待、不需要保存中间结果、每次操作变得简单

在这里插入图片描述

3.4.3.RDD特性

Spark采用RDD以后能够实现高效计算的原因主要在于:
(1)高效的容错性

现有容错机制:数据复制或者记录日志
RDD:血缘关系、重新计算丢失分区、无需回滚系统、重算过程在不同节点之间并行、只记录粗粒度的操作

(2)中间结果持久化到内存,数据在内存中的多个RDD操作之间进行传递,避免了不必要的读写磁盘开销
(3)存放的数据可以是Java对象,避免了不必要的对象序列化和反序列化

3.4.4.RDD之间的依赖关系

在这里插入图片描述

  • 窄依赖表现为一个父RDD的分区对应于一个子RDD的分区或多个父RDD的分区对应于一个子RDD的分区(多继承)

  • 宽依赖则表现为存在一个父RDD的一个分区对应一个子RDD的多个分区(单继承)

3.4.5.Stage的划分

Spark通过分析各个RDD的依赖关系生成了DAG,再通过分析各个RDD中的分区之间的依赖关系来决定如何划分Stage,具体划分方法是:

  • 在DAG中进行反向解析,遇到宽依赖就断开
  • 遇到窄依赖就把当前的RDD加入到Stage中
  • 将窄依赖尽量划分在同一个Stage中,可以实现流水线计算

流水线操作实例

分区7通过map操作生成的分区9,可以不用等待分区8到分区10这个map操作的计算结束,而是继续进行union操作,得到分区13,这样流水线执行大大提高了计算的效率

在这里插入图片描述

被分成三个Stage,在Stage2中,从map到union都是窄依赖,这两步操作可以形成一个流水线操作

Stage的类型包括两种:ShuffleMapStage和ResultStage

(1)ShuffleMapStage:不是最终的Stage,在它之后还有其他Stage,所以,它的输出一定需要经过Shuffle过程,并作为后续Stage的输入;这种Stage是以Shuffle为输出边界,其输入边界可以是从外部获取数据,也可以是另一个ShuffleMapStage的输出,其输出可以是另一个Stage的开始;在一个Job里可能有该类型的Stage,也可能没有该类型Stage;

(2)ResultStage:最终的Stage,没有输出,而是直接产生结果或存储。这种Stage是直接输出结果,其输入边界可以是从外部获取数据,也可以是另一个ShuffleMapStage的输出。在一个Job里必定有该类型Stage。

因此,一个Job含有一个或多个Stage,其中至少含有一个ResultStage。

3.4.6.RDD运行过程

通过上述对RDD概念、依赖关系和Stage划分的介绍,结合之前介绍的Spark运行基本流程,再总结一下RDD在Spark架构中的运行过程:
(1)创建RDD对象;
(2)SparkContext负责计算RDD之间的依赖关系,构建DAG;
(3)DAGScheduler负责把DAG图分解成多个Stage,每个Stage中包含了多个Task,每个Task会被TaskScheduler分发给各个WorkerNode上的Executor去执行。

在这里插入图片描述

4 Spark SQL

4.1 从Shark说起

Shark即Hive on Spark,为了实现与Hive兼容,Shark在HiveQL方面重用了Hive中HiveQL的解析、逻辑执行计划翻译、执行计划优化等逻辑,可以近似认为仅将物理执行计划从MapReduce作业替换成了Spark作业,通过Hive的HiveQL解析,把HiveQL翻译成Spark上的RDD操作

Shark的设计导致了两个问题:
一是执行计划优化完全依赖于Hive,不方便添加新的优化策略;
二是因为Spark是线程级并行,而MapReduce是进程级并行,因此,Spark在兼容Hive的实现上存在线程安全问题,导致Shark不得不使用另外一套独立维护的打了补丁的Hive源码分支

Hive中SQL查询的MapReduce作业转化过程
在这里插入图片描述

4.2 Spark SQL设计

Spark SQL在Hive兼容层面仅依赖HiveQL解析、Hive元数据,也就是说,从HQL被解析成抽象语法树(AST)起,就全部由Spark SQL接管了。Spark SQL执行计划生成和优化都由Catalyst(函数式关系查询优化框架)负责

Spark SQL架构

在这里插入图片描述

Spark SQL增加了SchemaRDD(即带有Schema信息的RDD),使用户可以在Spark SQL中执行SQL语句,数据既可以来自RDD,也可以是Hive、HDFS、Cassandra等外部数据源,还可以是JSON格式的数据
Spark SQL目前支持Scala、Java、Python三种语言,支持SQL-92规范

Spark SQL支持的数据格式和编程语言

在这里插入图片描述


5 Spark的部署和应用方式

5.1 Spark三种部署方式

Spark支持三种不同类型的部署方式,包括:

  • Standalone(类似于MapReduce1.0,slot为资源分配单位 )
  • Spark on Mesos(和Spark有血缘关系,更好支持Mesos)
  • Spark on YARN

Spark on Yarn架构

在这里插入图片描述

5.2 从Hadoop+Storm架构转向Spark架构

采用Hadoop+Storm部署方式的一个案例

在这里插入图片描述

可以看到这种架构部署较为繁琐。

用Spark架构满足批处理和流处理需求

在这里插入图片描述

用Spark架构具有如下优点:

  1. 实现一键式安装和配置、线程级别的任务监控和告警
  2. 降低硬件集群、软件维护、任务监控和应用开发的难度
  3. 便于做成统一的硬件、计算平台资源池

需要说明的是,Spark Streaming无法实现毫秒级的流计算,因此,对于需要毫秒级实时响应的企业应用而言,仍然需要采用流计算框架(如Storm)

5.3 Hadoop和Spark的统一部署

由于Hadoop生态系统中的一些组件所实现的功能,目前还是无法由Spark取代的,比如,Storm
现有的Hadoop组件开发的应用,完全转移到Spark上需要一定的成本

不同的计算框架统一运行在YARN中,可以带来如下好处:
    * 计算资源按需伸缩
    * 不用负载应用混搭,集群利用率高
    * 共享底层存储,避免数据跨集群迁移

Hadoop和Spark的统一部署

在这里插入图片描述

6 Spark编程实践

6.1 Spark安装

安装Spark之前需要安装Java环境和Hadoop环境。
下载链接

进入下载页面后,点击主页右侧的“Download Spark”按钮进入下载页面,下载页面中提供了几个下载选项,主要是Spark release及Package type的选择

在这里插入图片描述
第1项Spark release一般默认选择最新的发行版本,如3.0.0。

第2项package type则选择“Pre-build with user-provided Hadoop [can use with most Hadoop distributions]”,可适用于多数Hadoop版本。选择好之后,再点击第4项给出的链接就可以下载Spark了。

下载成功后cd到下载目录下

  1. 解压安装包spark-1.6.0-bin-without-hadoop.tgz至路径 /usr/local:注意使用自己下载的tgz包名
$ sudo tar -zxf ~/下载/spark-1.6.0-bin-without-hadoop.tgz -C /usr/local/
$ cd /usr/local
$ sudo mv ./spark-1.6.0-bin-without-hadoop/ ./spark   # 更改文件夹名
$ sudo chown -R hadoop ./spark                   # 此处的 hadoop 为系统用户名

  1. 配置Spark 的Classpath。
$ cd /usr/local/spark
$ cp ./conf/spark-env.sh.template ./conf/spark-env.sh   #拷贝配置文件

编辑该配置文件,在文件最后面加上如下一行内容:

export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)#注意将访问路径替换为自己实际hadoop安装路径

保存配置文件后,就可以启动、运行Spark了。Spark包含多种运行模式:单机模式、伪分布式模式、完全分布式模式。本章使用单机模式运行Spark。若需要使用HDFS中的文件,则在使用Spark前需要启动Hadoop。

6.2 启动Spark Shell

Spark Shell 提供了简单的方式来学习Spark API
Spark Shell可以以实时、交互的方式来分析数据
Spark Shell支持Scala和Python

本章节内容选择使用Scala进行编程实践,了解Scala有助于更好地掌握Spark。

在spark安装目录下(cd /usr/local/spark)执行如下命令启动Spark Shell:

$ ./bin/spark-shell

启动Spark Shell成功后在输出信息的末尾可以看到“Scala >”的命令提示符,如下图所示。

在这里插入图片描述

6.3 Spark RDD基本操作

Spark的主要操作对象是RDD,RDD可以通过多种方式灵活创建,可通过导入外部数据源建立,或者从其他的RDD转化而来。
在Spark程序中必须创建一个SparkContext以及一个sparkSession对象,该对象是Spark程序的入口,负责创建RDD、启动任务等。在启动Spark Shell后,该对象会自动创建,可以通过变量sc进行访问。

在这里插入图片描述

作为示例,我们选择以Spark安装目录中的“README.md”文件作为数据源新建一个RDD,代码如下:

Scala > val textFile = sc.textFile("file:///usr/local/spark/README.md")   // 通过file:前缀指定读取本地文件                                            

Spark RDD支持两种类型的操作:
动作(action):在数据集上进行运算,返回计算值
转换(transformation): 基于现有的数据集创建一个新的数据集

Spark提供了非常丰富的API,下面两表格列出了几个常用的动作、转换API,更详细的API及说明可查阅官方文档

常用Action API

Action API说明
count()返回数据集中的元素个数
collect()以数组的形式返回数据集中的所有元素
first()返回数据集中的第一个元素
take(n)以数组的形式返回数据集中的前n个元素
reduce(func)通过函数func(输入两个参数并返回一个值)聚合数据集中的元素
foreach(func)将数据集中的每个元素传递到函数func中运行

常用Transformation API

Transformation API说明
filter(func)筛选出满足函数func的元素,并返回一个新的数据集
map(func)将每个元素传递到函数func中,并将结果返回为一个新的数据集
flatMap(func)与map()相似,但每个输入元素都可以映射到0或多个输出结果
groupByKey()应用于(K,V)键值对的数据集时,返回一个新的(K, Iterable)形式的数据集
reduceByKey(func)应用于(K,V)键值对的数据集时,返回一个新的(K, V)形式的数据集,其中的每个值是将每个key传递到函数func中进行聚合
  • 使用action API - count()可以统计该文本文件的行数,命令如下:
Scala > textFile.count()
 输出结果 Long = 95( “Long=95”表示该文件共有95行内容)。
  • 使用transformation API - filter()可以筛选出只包含Spark的行,命令如下:
Scala > val linesWithSpark = textFile.filter(line => line.contains("Spark"))
Scala > linesWithSpark.count()
* 第一条命令会返回一个新的RDD;
* 输出结果Long=17(表示该文件中共有17行内容包含“Spark”)。
  • 也可以在同一条代码中同时使用多个API,连续进行运算,称为链式操作。不仅可以使Spark代码更加简洁,也优化了计算过程。如上述两条代码可合并为如下一行代码:
Scala > val linesCountWithSpark 
= textFile.filter(line => line.contains("Spark")).count()

假设我们只需要得到包含“Spark”的行数,那么存储筛选后的文本数据是多余的,因为这部分数据在计算得到行数后就不再使用到了。Spark基于整个操作链,仅储存、计算所需的数据,提升了运行效率。

Spark属于MapReduce计算模型,因此也可以实现MapReduce的计算流程,如实现单词统计,可以使用如下的命令实现:

Scala > val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)
Scala > wordCounts.collect() // 输出单词统计结果
// Array[(String, Int)] = Array((package,1), (For,2), (Programs,1), (processing.,1), (Because,1), (The,1)...)
  • 首先使用flatMap()将每一行的文本内容通过空格进行划分为单词;
  • 再使用map()将单词映射为(K,V)的键值对,其中K为单词,V为1;
  • 最后使用reduceByKey()将相同单词的计数进行相加,最终得到该单词总的出现的次数。

输出结果 Long = 95( “Long=95”表示该文件共有95行内容)。

6.4 Spark应用程序

在Spark Shell中进行编程主要是方便对代码进行调试,但需要以逐行代码的方式运行。一般情况下,会选择将调试后代码打包成独立的Spark应用程序,提交到Spark中运行。

sbt安装文档

采用Scala编写的程序需要使用sbt(Simple Build Tool)进行打包,sbt的安装配置步骤如下:

(1) 下载sbt-launch.jar(下载地址 http://pan.baidu.com/s/1eRyFddw )
(2)将下载后的文件拷贝至安装目录/usr/local/sbt中,命令如下:

sudo mkdir /usr/local/sbt      # 创建安装目录
cp ~/下载/sbt-launch.jar /usr/local/sbt  
sudo chown -R hadoop /usr/local/sbt  #此处的hadoop为系统当前用户名

(3)在安装目录中创建一个Shell脚本文件(文件路径:/usr/local/sbt/sbt)用于启动sbt,脚本文件中的代码如下:

#!/bin/bash
SBT_OPTS="-Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=256M"
java $SBT_OPTS -jar `dirname $0`/sbt-launch.jar "$@"

(4)保存后,还需要为该Shell脚本文件增加可执行权限,命令如下:

chmod u+x /usr/local/sbt/sbt

(5)开启sbt

./sbt sbtVersion

在这里如果运气不好或者网络不好的时候会一直在等待状态,笔者做了很多尝试都没有用,如果初始化sbt失败可以不妨删除sbt的安装记录再次进行初始化,直到成功

rm -r ~/.sbt
rm -r ~/.ivy2
rm -r ~/.ivy

我们以一个简单的程序为例,介绍如何打包并运行Spark程序,该程序的功能是统计文本文件中包含字母a和字b的各有多少行,具体步骤如下:

1.创建程序根目录,并创建程序所需的文件夹结构,命令如下:

mkdir ~/sparkapp                 # 创建程序根目录
mkdir -p ~/sparkapp/src/main/scala   # 创建程序所需的文件夹结构

2.创建一个SimpleApp.scala文件(文件路径: ~/sparkapp/src/main/scala/SimpleApp.scala),文件中的代码内容如下:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object SimpleApp {
 def main(args: Array[String]) {
   val logFile = "file:///usr/local/spark/README.md" // 用于统计的文本文件
   val conf = new SparkConf().setAppName("Simple Application")
   val sc = new SparkContext(conf)
   val logData = sc.textFile(logFile, 2).cache()
   val numAs = logData.filter(line => line.contains("a")).count()
   val numBs = logData.filter(line => line.contains("b")).count()
   println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
 }
}

3.然后创建一个simple.sbt文件(文件路径:~/sparkapp/simple.sbt),用于声明该应用程序的信息以及与Spark的依赖关系,具体内容如下:

name := "Simple Project"
version := "1.0"
scalaVersion := "2.10.5"
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.6.0"

4.使用sbt对该应用程序进行打包,命令如下:

cd ~/sparkapp
/usr/local/sbt/sbt package

打包成功后,会输出程序jar包的位置以及“Done Packaging”的提示,如下图所示。

在这里插入图片描述

有了最终生成的jar包后,再通过spark-submit就可以提交到Spark中运行了,命令如下:

/usr/local/spark/bin/spark-submit --class "SimpleApp" ~/sparkapp/target/scala-2.10/simple-project_2.10-1.0.jar

该应用程序的执行结果如下:

Lines with a: 58, Lines with b: 26
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值