二进制求幂

定义

快速幂,二进制取幂( B i n a r y E x p o n e n t i a t i o n Binary Exponentiation BinaryExponentiation,也称平方法),是一个在 Θ ( log ⁡ n ) \Theta(\log n) Θ(logn) 的时间内计算 a n a^n an 的小技巧,而暴力的计算需要 Θ ( n ) \Theta(n) Θ(n) 的时间。

这个技巧也常常用在非计算的场景,因为它可以应用在任何具有结合律的运算中。其中显然的是它可以应用于模意义下取幂、矩阵幂等运算,我们接下来会讨论。

解释

计算 a a a n n n 次方表示将 n n n a a a 乘在一起: a n = a × a ⋯ × a ⏟ n  个 a a^{n} = \underbrace{a \times a \cdots \times a}_{n\text{ 个 a}} an=n  a a×a×a。然而当 a , n a,n a,n 太大的时侯,这种方法就不太适用了。不过我们知道: a b + c = a b ⋅ a c ,    a 2 b = a b ⋅ a b = ( a b ) 2 a^{b+c} = a^b \cdot a^c,\,\,a^{2b} = a^b \cdot a^b = (a^b)^2 ab+c=abac,a2b=abab=(ab)2。二进制取幂的想法是,我们将取幂的任务按照指数的 二进制表示 来分割成更小的任务。

过程

迭代版本

首先我们将 n n n 表示为 2 2 2 进制,举一个例子:

3 13 = 3 ( 1101 ) 2 = 3 8 ⋅ 3 4 ⋅ 3 1 3^{13} = 3^{(1101)_2} = 3^8 \cdot 3^4 \cdot 3^1 313=3(1101)2=383431

因为 n n n ⌊ log ⁡ 2 n ⌋ + 1 \lfloor \log_2 n \rfloor + 1 log2n+1 个二进制位,因此当我们知道了 a 1 , a 2 , a 4 , a 8 , … , a 2 ⌊ log ⁡ 2 n ⌋ a^1, a^2, a^4, a^8, \dots, a^{2^{\lfloor \log_2 n \rfloor}} a1,a2,a4,a8,,a2log2n 后,我们只用计算 Θ ( log ⁡ n ) \Theta(\log n) Θ(logn) 次乘法就可以计算出 a n a^n an

于是我们只需要知道一个快速的方法来计算上述 3 3 3 2 k 2^k 2k 次幂的序列。这个问题很简单,因为序列中(除第一个)任意一个元素就是其前一个元素的平方。举一个例子:

3 1 = 3 3 2 = ( 3 1 ) 2 = 3 2 = 9 3 4 = ( 3 2 ) 2 = 9 2 = 81 3 8 = ( 3 4 ) 2 = 8 1 2 = 6561 \begin{align} 3^1 &= 3 \\ 3^2 &= \left(3^1\right)^2 = 3^2 = 9 \\ 3^4 &= \left(3^2\right)^2 = 9^2 = 81 \\ 3^8 &= \left(3^4\right)^2 = 81^2 = 6561 \end{align} 31323438=3=(31)2=32=9=(32)2=92=81=(34)2=812=6561

因此为了计算 3 13 3^{13} 313,我们只需要将对应二进制位为 1 的整系数幂乘起来就行了:

3 13 = 6561 ⋅ 81 ⋅ 3 = 1594323 3^{13} = 6561 \cdot 81 \cdot 3 = 1594323 313=6561813=1594323

将上述过程说得形式化一些,如果把 n n n 写作二进制为 ( n t n t − 1 ⋯ n 1 n 0 ) 2 (n_tn_{t-1}\cdots n_1n_0)_2 (ntnt1n1n0)2,那么有:

n = n t 2 t + n t − 1 2 t − 1 + n t − 2 2 t − 2 + ⋯ + n 1 2 1 + n 0 2 0 n = n_t2^t + n_{t-1}2^{t-1} + n_{t-2}2^{t-2} + \cdots + n_12^1 + n_02^0 n=nt2t+nt12t1+nt22t2++n121+n020

其中 n i ∈ { 0 , 1 } n_i\in\{0,1\} ni{0,1}。那么就有

a n = ( a n t 2 t + ⋯ + n 0 2 0 ) = a n 0 2 0 × a n 1 2 1 × ⋯ × a n t 2 t \begin{aligned} a^n & = (a^{n_t 2^t + \cdots + n_0 2^0})\\\\ & = a^{n_0 2^0} \times a^{n_1 2^1}\times \cdots \times a^{n_t2^t} \end{aligned} an=(ant2t++n020)=an020×an121××ant2t

根据上式我们发现,原问题被我们转化成了形式相同的子问题的乘积,并且我们可以在常数时间内从 2 i 2^i 2i 项推出 2 i + 1 2^{i+1} 2i+1 项。

这个算法的复杂度是 Θ ( log ⁡ n ) \Theta(\log n) Θ(logn) 的,我们计算了 Θ ( log ⁡ n ) \Theta(\log n) Θ(logn) 2 k 2^k 2k 次幂的数,然后花费 Θ ( log ⁡ n ) \Theta(\log n) Θ(logn) 的时间选择二进制为 1 对应的幂来相乘。

递归版本

上述迭代版本中,由于 2 i + 1 2^{i+1} 2i+1 项依赖于 2 i 2^i 2i,使得其转换为递归版本比较困难(一方面需要返回一个额外的 a 2 i a^{2^i} a2i,对函数来说无法实现一个只返回计算结果的接口;另一方面则是必须从低位往高位计算,即从高位往低位调用,这也造成了递归实现的困扰),下面则提供递归版本的思路。

给定形式 n t … i = ( n t n t − 1 ⋯ n i ) 2 n_{t\dots i} = (n_tn_{t-1}\cdots n_i)_2 nti=(ntnt1ni)2,即 n t … i n_{t\dots i} nti 表示将 n n n 的前 t − i + 1 t - i + 1 ti+1 位二进制位当作一个二进制数,则有如下变换:

n = n t … 0 = 2 × n t … 1 + n 0 = 2 × ( 2 × n t … 2 + n 1 ) + n 0 ⋯ \begin{aligned} n &= n_{t\dots 0} \\ &= 2\times n_{t\dots 1} + n_0\\ &= 2\times (2\times n_{t\dots 2} + n_1) + n_0 \\ &\cdots \end{aligned} n=nt0=2×nt1+n0=2×(2×nt2+n1)+n0

那么有:

a n = a n t … 0 = a 2 × n t … 1 + n 0 = ( a n t … 1 ) 2 a n 0 = ( a 2 × n t … 2 + n 1 ) 2 a n 0 = ( ( a n t … 2 ) 2 a n 1 ) 2 a n 0 ⋯ \begin{aligned} a^n &= a^{n_{t\dots 0}} \\ &= a^{2\times n_{t\dots 1} + n_0} = \left(a^{n_{t\dots 1}}\right)^2 a^{n_0} \\ &= \left(a^{2\times n_{t\dots 2} + n_1}\right)^2 a^{n_0} = \left(\left(a^{n_{t\dots 2}}\right)^2 a^{n_1}\right)^2 a^{n_0} \\ &\cdots \end{aligned} an=ant0=a2×nt1+n0=(ant1)2an0=(a2×nt2+n1)2an0=((ant2)2an1)2an0

如上所述,在递归时,对于不同的递归深度是相同的处理: a n t … i = ( a n t … ( i + 1 ) ) 2 a n i a^{n_{t\dots i}} = (a^{n_{t\dots (i+1)}})^2a^{n_i} anti=(ant(i+1))2ani,即将当前递归的二进制数拆成两部分:最低位在递归出来时乘上去,其余部分则变成新的二进制数递归进入更深一层作相同的处理。

可以观察到,每递归深入一层则二进制位减少一位,所以该算法的时间复杂度也为 Θ ( log ⁡ n ) \Theta(\log n) Θ(logn)

实现

首先我们可以直接按照上述递归方法实现:

long long binpow(long long a, long long b) {
  if (b == 0) return 1;
long long res = binpow(a, b / 2);
  if (b % 2)
    return res * res * a;
  else
    return res * res;
}

第二种实现方法是非递归式的。它在循环的过程中将二进制位为 1 时对应的幂累乘到答案中。尽管两者的理论复杂度是相同的,但第二种在实践过程中的速度是比第一种更快的,因为递归会花费一定的开销。

long long binpow(long long a, long long b) {
  long long res = 1;
  while (b > 0) {
    if (b & 1) res = res * a;
    a = a * a;
    b >>= 1;
  }
  return res;
}

模板:Luogu P1226

应用

模意义下取幂

计算 x n   m o d   m x^n\bmod m xnmodm

这是一个非常常见的应用,例如它可以用于计算模意义下的乘法逆元。

既然我们知道取模的运算不会干涉乘法运算,因此我们只需要在计算的过程中取模即可。

long long binpow(long long a, long long b, long long m) {
  a %= m;
  long long res = 1;
  while (b > 0) {
    if (b & 1) res = res * a % m;
    a = a * a % m;
    b >>= 1;
  }
  return res;
}

注意:根据费马小定理,如果 m m m 是一个质数,我们可以计算 x n   m o d   ( m − 1 ) x^{n\bmod (m-1)} xnmod(m1) 来加速算法过程。

计算斐波那契数

计算斐波那契数列第 n n n F n F_n Fn

根据斐波那契数列的递推式 F n = F n − 1 + F n − 2 F_n = F_{n-1} + F_{n-2} Fn=Fn1+Fn2,我们可以构建一个 2 × 2 2\times 2 2×2 的矩阵来表示从 F i , F i + 1 F_i,F_{i+1} Fi,Fi+1 F i + 1 , F i + 2 F_{i+1},F_{i+2} Fi+1,Fi+2 的变换。于是在计算这个矩阵的 n n n 次幂的时侯,我们使用快速幂的思想,可以在 Θ ( log ⁡ n ) \Theta(\log n) Θ(logn) 的时间内计算出结果。

多次置换

给你一个长度为 n n n 的序列和一个置换,把这个序列置换 k k k 次。

简单地把这个置换取 k k k 次幂,然后把它应用到序列 n n n 上即可。时间复杂度是 O ( n log ⁡ k ) O(n \log k) O(nlogk) 的。

注意:给这个置换建图,然后在每一个环上分别做 k k k 次幂(事实上做一下 k k k 对环长取模的运算即可)可以取得更高效的算法,达到 O ( n ) O(n) O(n) 的复杂度。

加速几何中对点集的操作

引入

三维空间中, n n n 个点 p i p_i pi,要求将 m m m 个操作都应用于这些点。包含 3 种操作:

  1. 沿某个向量移动点的位置(Shift)。
  2. 按比例缩放这个点的坐标(Scale)。
  3. 绕某个坐标轴旋转(Rotate)。

还有一个特殊的操作,就是将一个操作序列重复 k k k 次(Loop),这个序列中也可能有 Loop 操作(Loop 操作可以嵌套)。现在要求你在低于 O ( n ⋅ length ) O(n \cdot \textit{length}) O(nlength) 的时间内将这些变换应用到这个 n n n 个点,其中 length \textit{length} length 表示把所有的 Loop 操作展开后的操作序列的长度。

解释

让我们来观察一下这三种操作对坐标的影响:

  1. Shift 操作:将每一维的坐标分别加上一个常量;
  2. Scale 操作:把每一维坐标分别乘上一个常量;
  3. Rotate 操作:这个有点复杂,我们不打算深入探究,不过我们仍然可以使用一个线性组合来表示新的坐标。

可以看到,每一个变换可以被表示为对坐标的线性运算,因此,一个变换可以用一个 4 × 4 4\times 4 4×4 的矩阵来表示:

[ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ] \begin{bmatrix} a_{11} & a_ {12} & a_ {13} & a_ {14} \\ a_{21} & a_ {22} & a_ {23} & a_ {24} \\ a_{31} & a_ {32} & a_ {33} & a_ {34} \\ a_{41} & a_ {42} & a_ {43} & a_ {44} \\ \end{bmatrix} a11a21a31a41a12a22a32a42a13a23a33a43a14a24a34a44

使用这个矩阵就可以将一个坐标(向量)进行变换,得到新的坐标(向量):

[ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ] ⋅ [ x y z 1 ] = [ x ′ y ′ z ′ 1 ] \begin{bmatrix} a_{11} & a_ {12} & a_ {13} & a_ {14} \\ a_{21} & a_ {22} & a_ {23} & a_ {24} \\ a_{31} & a_ {32} & a_ {33} & a_ {34} \\ a_{41} & a_ {42} & a_ {43} & a_ {44} \\ \end{bmatrix}\cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} a11a21a31a41a12a22a32a42a13a23a33a43a14a24a34a44 xyz1 = xyz1

你可能会问,为什么一个三维坐标会多一个 1 1 1 出来?原因在于,如果没有这个多出来的 1 1 1,我们没法使用矩阵的线性变换来描述 S h i f t Shift Shift 操作。

过程

接下来举一些简单的例子来说明我们的思路:

  1. Shift 操作:让 x x x 坐标方向的位移为 5 5 5 y y y 坐标的位移为 7 7 7 z z z 坐标的位移为 9 9 9

    [ 1 0 0 5 0 1 0 7 0 0 1 9 0 0 0 1 ] \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} 1000010000105791

  2. Scale 操作:把 x x x 坐标拉伸 10 倍, y , z y,z y,z 坐标拉伸 5 倍:

    [ 10 0 0 0 0 5 0 0 0 0 5 0 0 0 0 1 ] \begin{bmatrix} 10 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} 10000050000500001

  3. Rotate 操作:绕 x x x 轴旋转 θ \theta θ 弧度,遵循右手定则(逆时针方向)

    [ 1 0 0 0 0 cos ⁡ θ sin ⁡ θ 0 0 − sin ⁡ θ cos ⁡ θ 0 0 0 0 1 ] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & \sin \theta & 0 \\ 0 & -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} 10000cosθsinθ00sinθcosθ00001

现在,每一种操作都被表示为了一个矩阵,变换序列可以用矩阵的乘积来表示,而一个 Loop 操作相当于取一个矩阵的 k 次幂。这样可以用 O ( m log ⁡ k ) O(m \log k) O(mlogk) 计算出整个变换序列最终形成的矩阵。最后将它应用到 n n n 个点上,总复杂度 O ( n + m log ⁡ k ) O(n + m \log k) O(n+mlogk)

定长路径计数

给一个有向图(边权为 1),求任意两点 u , v u,v u,v 间从 u u u v v v,长度为 k k k 的路径的条数。

我们把该图的邻接矩阵 M 取 k 次幂,那么 M i , j M_{i,j} Mi,j 就表示从 i i i j j j 长度为 k k k 的路径的数目。该算法的复杂度是 O ( n 3 log ⁡ k ) O(n^3 \log k) O(n3logk)。有关该算法的细节请参见 矩阵 页面。

模意义下大整数乘法

计算 a × b   m o d   m ,    a , b ≤ m ≤ 1 0 18 a\times b\bmod m,\,\,a,b\le m\le 10^{18} a×bmodm,a,bm1018

与二进制取幂的思想一样,这次我们将其中的一个乘数表示为若干个 2 的整数次幂的和的形式。因为在对一个数做乘 2 并取模的运算的时侯,我们可以转化为加减操作防止溢出。这样仍可以在 O ( log ⁡ 2 m ) O (\log_2 m) O(log2m) 的时内解决问题。递归方法如下:

a ⋅ b = { 0 if  a = 0 2 ⋅ a 2 ⋅ b if  a > 0  and  a  even 2 ⋅ a − 1 2 ⋅ b + b if  a > 0  and  a  odd a \cdot b = \begin{cases} 0 &\text{if }a = 0 \\\\ 2 \cdot \frac{a}{2} \cdot b &\text{if }a > 0 \text{ and }a \text{ even} \\\\ 2 \cdot \frac{a-1}{2} \cdot b + b &\text{if }a > 0 \text{ and }a \text{ odd} \end{cases} ab= 022ab22a1b+bif a=0if a>0 and a evenif a>0 and a odd

快速乘

但是 O ( log ⁡ 2 m ) O(\log_2 m) O(log2m) 的「龟速乘」还是太慢了,这在很多对常数要求比较高的算法比如 Miller_Rabin 和 Pollard-Rho 中,就显得不够用了。所以我们要介绍一种可以处理模数在 long long 范围内、不需要使用黑科技 __int128 的、复杂度为 O ( 1 ) O(1) O(1) 的「快速乘」。

我们发现:

a × b   m o d   m = a × b − ⌊ a b m ⌋ × m a\times b\bmod m=a\times b-\left\lfloor \dfrac{ab}m \right\rfloor\times m a×bmodm=a×bmab×m

我们巧妙运用 unsigned long long 的自然溢出:

a × b   m o d   m = a × b − ⌊ a b m ⌋ × m = ( a × b − ⌊ a b m ⌋ × m )   m o d   2 64 a\times b\bmod m=a\times b-\left\lfloor \dfrac{ab}m \right\rfloor\times m=\left(a\times b-\left\lfloor \dfrac{ab}m \right\rfloor\times m\right)\bmod 2^{64} a×bmodm=a×bmab×m=(a×bmab×m)mod264

于是在算出 ⌊ a b m ⌋ \left\lfloor\dfrac{ab}m\right\rfloor mab 后,两边的乘法和中间的减法部分都可以使用 unsigned long long 直接计算,现在我们只需要解决如何计算 ⌊ a b m ⌋ \left\lfloor\dfrac {ab}m\right\rfloor mab

我们考虑先使用 long double 算出 a m \dfrac am ma 再乘上 b b b

既然使用了 long double,就无疑会有精度误差。极端情况就是第一个有效数字(二进制下)在小数点后一位。在 x86-64 机器下,long double 将被解释成 80 80 80 位拓展小数(即符号为 1 1 1 位,指数为 15 15 15 位,尾数为 64 64 64 位),所以 long double 最多能精确表示的有效位数为 64 64 64[^note1]。所以 a m \dfrac am ma 最差从第 65 65 65 位开始出错,误差范围为 ( − 2 − 64 , 2 64 ) \left(-2^{-64},2^{64}\right) (264,264)。乘上 b b b 这个 64 64 64 位整数,误差范围为 ( − 0.5 , 0.5 ) (-0.5,0.5) (0.5,0.5),再加上 0.5 0.5 0.5 误差范围为 ( 0 , 1 ) (0,1) (0,1),取整后误差范围位 { 0 , 1 } \{0,1\} {0,1}。于是乘上 − m -m m 后,误差范围变成 { 0 , − m } \{0,-m\} {0,m},我们需要判断这两种情况。

因为 m m mlong long 范围内,所以如果计算结果 r r r [ 0 , m ) [0,m) [0,m) 时,直接返回 r r r,否则返回 r + m r+m r+m,当然你也可以直接返回 ( r + m )   m o d   m (r+m)\bmod m (r+m)modm

代码实现如下:

long long binmul(long long a, long long b, long long m) {
  unsigned long long c =
      (unsigned long long)a * b -
      (unsigned long long)((long double)a / m * b + 0.5L) * m;
  if (c < m) return c;
  return c + m;
}

高精度快速幂

例题【NOIP2003 普及组改编·麦森数】原题在此

题目大意:从文件中输入 P P P 1000 < P < 3100000 1000 < P < 3100000 1000<P<3100000),计算 2 P − 1 2^P−1 2P1 的最后 $100¥ 位数字(用十进制高精度数表示),不足 100 100 100 位时高位补 0 0 0

代码实现如下:

#include <bits/stdc++.h>
using namespace std;
int a[505], b[505], t[505], i, j;

void mult(int x[], int y[])  // 高精度乘法
{
  memset(t, 0, sizeof(t));
  for (i = 1; i <= x[0]; i++) {
    for (j = 1; j <= y[0]; j++) {
      if (i + j - 1 > 100) continue;
      t[i + j - 1] += x[i] * y[j];
      t[i + j] += t[i + j - 1] / 10;
      t[i + j - 1] %= 10;
      t[0] = i + j;
    }
  }
  memcpy(b, t, sizeof(b));
}

void ksm(int p)  // 快速幂
{
  if (p == 1) {
    memcpy(b, a, sizeof(b));
    return;
  }
  ksm(p / 2);  //(2^(p/2))^2=2^p
  mult(b, b);  // 对b平方
  if (p % 2 == 1) mult(b, a);
}

int main() {
  int p;
  scanf("%d", &p);
  a[0] = 1;  // 记录a数组的位数
  a[1] = 2;  // 对2进行平方
  b[0] = 1;  // 记录b数组的位数
  b[1] = 1;  // 答案数组
  ksm(p);
  for (i = 100; i >= 1; i--) {
    if (i == 1) {
      printf("%d\n", b[i] - 1);  // 最后一位减1
    } else
      printf("%d", b[i]);
  }
}

同一底数与同一模数的预处理快速幂

在同一底数与同一模数的条件下,可以利用分块思想,用一定的时间(一般是 O ( n ) O(\sqrt n) O(n ))预处理后用 O ( 1 ) O(1) O(1) 的时间回答一次幂询问。

过程
  1. 选定一个数 s s s,预处理出 a 0 a^0 a0 a s a^s as a 0 ⋅ s a^{0\cdot s} a0s a ⌈ p s ⌉ ⋅ s a^{\lceil\frac ps\rceil\cdot s} asps 的值并存在一个(或两个)数组里;
  2. 对于每一次询问 a b   m o d   p a^b\bmod p abmodp,将 b b b 拆分成 ⌊ b s ⌋ ⋅ s + b   m o d   s \left\lfloor\dfrac bs\right\rfloor\cdot s+b\bmod s sbs+bmods,则 a b = a ⌊ b s ⌋ ⋅ s × a b   m o d   s a^b=a^{\lfloor\frac bs\rfloor\cdot s}\times a^{b\bmod s} ab=asbs×abmods,可以 O ( 1 ) O(1) O(1) 求出答案。

关于这个数 s s s 的选择,我们一般选择 p \sqrt p p 或者一个大小适当的 2 2 2 的次幂(选择 p \sqrt p p 可以使预处理较优,选择 2 2 2 的次幂可以使用位运算优化/简化计算)。

int pow1[65536], pow2[65536];
void preproc(int a, int mod) {
  pow1[0] = pow2[0] = 1;
  for (int i = 1; i < 65536; i++) pow1[i] = 1LL * pow1[i - 1] * a % mod;
  int pow65536 = 1LL * pow1[65535] * a % mod;
  for (int i = 1; i < 65536; i++) pow2[i] = 1LL * pow2[i - 1] * pow65536 % mod;
}
int query(int pows) { return 1LL * pow1[pows & 65535] * pow2[pows >> 16]; }

习题

  • 23
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值