要求:给定面额为1,5,10,50,100,500这六种面额的硬币,各3,2,1,3,0,2枚,现在用这些硬币支付A元,求使用最少的硬币。
先上代码:
#include<cstdio>
using namespace std;
int solve(int A);
const int v[6] = {1,5,10,50,100,500};//面额
int main()
{
solve(620);
return 0;
}
int solve(int A)
{
int sum = 0;
int c[6] = {3,2,1,3,0,2};//每种硬币的枚数
for(int i = 0 ; i<6 ; i++) //判断所有硬币的总额
sum += v[i]*c[i];
if(sum < A)
{
printf("总额不够");
return 0;
}
int temp,index,count = 0;
while(A != 0)
{
int min = 1000000;
for(int i = 0 ; i<6 ; i++)
{
if(A/v[i]<min&&A/v[i]>0&&c[i]>0)//Min表示枚数
{
min = A/v[i];//这儿有个问题,如果枚数大于剩余的枚数,下面的c[index]就成负数了,减多了
temp = v[i];
index = i;
}
}
count+=min;
c[index]-=min;
A = A-min*temp;
printf("%d\t",temp);
if(c[index]<0) //把上面减多的加回来
{
A += temp*(-c[index]);
count+=c[index];
}
}
printf("count:%d",count);
return 0;
}
优先使用最大面额的硬币才能使硬币数最少。
但是,刚才我讨论到一个问题:如果A=100,面值为80,70,30,10,10,假设数量都是无限。
那上面的代码就是错的 ?。因为优先使用最大面额,80,10,10,而恰恰最少的硬币是70,30。
这里就涉及到动态规划问题,此处并不适合贪心,因为上面的面额,每一种都是另一种的倍数,1,5,10,50等,而70,80,30并不涉及到这些,所以不能使用贪心。