GalaxyOJ-36 (排序+并查集)

题目

BZOJ-1050也有这题,可以在那里交。(点击题号传送门)

Problem Description

Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光。Z小镇附近共有N个景点(编号为1,2,3,…,N),这些景点被M条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路。也许是为了保护该地的旅游资源,Z小镇有个奇怪的规定,就是对于一条给定的公路Ri,任何在该公路上行驶的车辆速度必须为Vi。速度变化太快使得游客们很不舒服,因此从一个景点前往另一个景点的时候,大家都希望选择行使过程中最大速度和最小速度的比尽可能小的路线,也就是所谓最舒适的路线。

Input

第一行包含两个正整数,N和M。

接下来的M行每行包含三个正整数:x,y和v。表示景点x到景点y之间有一条双向公路,车辆必须以速度v在该公路上行驶。

最后一行包含两个正整数s,t,表示想知道从景点s到景点t最大最小速度比最小的路径。s和t不可能相同。

1<N≤500
1≤x,y≤N,0<v<30000,x≠y
0<M≤5000

Output

如果景点s到景点t没有路径,输出“IMPOSSIBLE”。否则输出一个数,表示最小的速度比。如果需要,输出一个既约分数。

Sample Input

此题有多个样例:


4 2
1 2 1
3 4 2
1 4


3 3
1 2 10
1 2 5
2 3 8
1 3


3 2
1 2 2
2 3 4
1 3

Sample Output


IMPOSSIBLE


5/4


2

Problem Source

HAOI06

分析

  • 题目大意就是说一个图里面找出ST的路径中 的最小值。
  • 开始我想成类似SPFA的方法,以为只要最大值越小的同时最小值越大即可,然后松弛一下,后来发现正确性有很大问题,看了题解才恍然大悟。
  • 具体方法是把所有边按权值排个序,然后枚举假装最后路径中最小权值那条边(从全部边中枚举),然后再依次把权值比它大的边加入图中,直到ST连同了,这时得到这条“大边”与上一层枚举的“小边”的权值比。在每个边当成“小边”所得到的最小比值中去个最小值即为答案,要是ST始终不能连同,那么就说明你需要输出“IMPOSSIBLE”了。

程序

#include <cstdio>
#include <algorithm>
using namespace std;
int n,m,a1=2147483647,a2=1,k,S,T,a[100005],x[100005],y[100005],v[100005],fa[10005];
bool cmp(int x1,int x2){return v[x1]<v[x2];}
int gcd(int x1,int x2){return !x2 ? x1:gcd(x2,x1%x2);}
int Fa(int p){ return fa[p]==p ? p:fa[p]=Fa(fa[p]);}

int main(){
    scanf("%d%d",&n,&m);
    for (int i=1; i<=m; a[i]=i,i++) scanf("%d%d%d",&x[i],&y[i],&v[i]);
    scanf("%d%d",&S,&T);
    sort(a+1,a+m+1,cmp);    
    for (int i=1,I=a[i]; i<=m; I=a[++i]){
        for (int j=1; j<=n; j++) fa[j]=j;
        fa[x[I]]=fa[y[I]];
        for (int j=i,J=a[j]; j<=m; J=a[++j]){
            if (Fa(x[J])!=Fa(y[J])) fa[Fa(x[J])]=fa[Fa(y[J])];
            if (Fa(S)==Fa(T)){
                if ((double)a1/a2>(double)v[J]/v[I]) a1=v[J],a2=v[I];
                break;
            }
        }
    }
    k=gcd(a1,a2);
    if (a1==2147483647) puts("IMPOSSIBLE");
    else if (a1!=a2) printf("%d/%d\n",a1/k,a2/k);
    else puts("1");
    return 0;
}                

提示

看数据范围,时间复杂度大概就 m^2 ,应该没问题(确实过了)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值