【Learning Notes】基于 boosting 原理训练深层残差神经网络

文章指出一种基于 boosting(提升)原理,逐层训练深度残差神经网络的方法,并对性能及泛化能力给出了理论上的证明。

1. 背景

1.1 Boosting

Boosting[1] 是一种训练 Ensemble 模型的经典方法,其中一种具体实现 GBDT 更是广泛应用在各类问题上。介绍boost的文章很多,这里不再赘述。简单而言,boosting 方法是通过特定的准则,逐个训练一系列弱分类,这些弱分类加权构成一个强分类器(图1)。

这里写图片描述
图1 Boosting 方法原理图【src

1.2 残差网络

残差网络[2]目前是图像分类等任务上最好的模型,也被应用到语音识别等领域。其中核心是 skip connect 或者说 shortcut(图2)。这种结构使梯度更易容向后传导,因此,使训练更深的网络变得可行。

这里写图片描述
图2. 残差网络基本block[2]

在之前的博文中,我们知道,一些学者将残差网络视一种特殊的 Ensemble 模型[3,4]。论文作者之一是Robert Schapire(刚注意到已经加入微软研究院),AdaBoost的提出者(和 Yoav Freund一起)。Ensemble 的观点基本算是主流观点(之一)了。

2. 训练方法

2.1 框架

这里写图片描述
图3. BoostResNet 框架

  • 残差网络

gt+1(x)=f(gt(x))+gt(x)

  • hypothesis module

    ot(x)=softmax(WTtgt(x))RC

    其中 C 为分类任务的类别数。
    即这是一个线性分类器(Logistic Regression)。

  • weak module classifier

ht(x)
  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于BP神经网络算法的智能扫地机器人程序可以通过以下方式进一步改进: 1. 数据增强:引入数据增强技术,通过对原始训练数据进行随机变换和扩充,可以增加模型的泛化能力,提升智能扫地机器人在不同环境下的性能。 2. 深层网络结构:使用更深的神经网络结构,如卷积神经网络(CNN)或循环神经网络(RNN),可以提高模型的表达能力和特征提取能力。这些深层网络结构可以更好地捕捉图像或序列数据中的空间和时间关系。 3. 正则化技术:引入正则化技术,如L1正则化或L2正则化,可以减少模型的过拟合现象,提高其在未见过的数据上的泛化能力。 4. 优化算法选择:尝试不同的优化算法,如Adam、SGD、RMSprop等,以找到更好的参数更新策略。不同的优化算法可能对不同的问题和数据集具有不同的效果。 5. 集成学习:使用集成学习方法,如Bagging或Boosting,将多个基础模型的预测结果进行组合,可以进一步提高模型的性能和鲁棒性。 6. 引入先验知识:根据智能扫地机器人的具体任务和环境,可以引入先验知识,例如地图信息、障碍物位置等,来辅助模型的学习和决策过程。 7. 超参数调优:对于BP神经网络算法,存在一些重要的超参数,如学习率、批次大小、隐藏层节点数等。通过使用交叉验证或网格搜索等方法,可以找到最优的超参数组合,提高模型性能。 综上所述,通过数据增强、深层网络结构、正则化技术、优化算法选择、集成学习、引入先验知识和超参数调优等方法,可以进一步改进基于BP神经网络算法的智能扫地机器人程序的性能和效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值