【Learning Notes】Gumbel 分布及应用浅析

本文介绍了Gumbel分布的物理意义、概率密度函数和采样方法,包括基于softmax和gumbel的采样。接着详细阐述了Gumbel-Softmax如何实现离散多项分布的可微采样,通过调整温度参数逐步逼近真实的一热分布。在讨论部分,指出了gumbel-softmax在参数训练和采样任务中的独特优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 分布的形式化

物理意义

Gumbel 分布是一种极值型分布。举例而言,假设每次测量心率值为一个随机变量(服从某种指数族分布,如正态分布),每天测量10次心率并取最大的一个心率值作为当天的心率测量值。显然,每天纪录的心率值也是一个随机变量,并且它的概率分布即为 Gumbel 分布。

概率密度函数(PDF)

Gumbel 分布的 PDF 如下:

f(x;μ,β)=ezez, z=xμβ f ( x ; μ , β ) = e − z − e − z ,   z = x − μ β

公式中, μ μ 是位置系数(Gumbel 分布的众数是 μ μ ), β β 是尺度系数

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值