数学研究的特性:
1)抽象性 使其独立于物,应用时有普遍适用性.
2)精确性 使用无限大集合 从而映射到时间上具有跨越时间的能力,即可以预测未来也可回溯过去.
数学的发展是发现矛盾突破矛盾的过程.
1)用勾股定理求等边三角形斜边--发现无理数
2)对欧式几何第五公理的推演(第一次数学危机)--认识到数学系统的存在是基于假设而非真理
不同的假设组成的符合形式逻辑的系统都是正确的,而新系统的发现往往超越实际的应用速度.
数学研究的特性:
1)抽象性 使其独立于物,应用时有普遍适用性.
2)精确性 使用无限大集合 从而映射到时间上具有跨越时间的能力,即可以预测未来也可回溯过去.
数学的发展是发现矛盾突破矛盾的过程.
1)用勾股定理求等边三角形斜边--发现无理数
2)对欧式几何第五公理的推演(第一次数学危机)--认识到数学系统的存在是基于假设而非真理
不同的假设组成的符合形式逻辑的系统都是正确的,而新系统的发现往往超越实际的应用速度.