300. 最长递增子序列【 力扣(LeetCode) 】

零、原题链接


300. 最长递增子序列

一、题目描述

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

二、测试用例

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

1 <= nums.length <= 2500
-104 <= nums[i] <= 104

三、解题思路

3.1 动态规划

  1. 基本思路:
      利用动态规划的思想,假设严格递增子序列 i 表示从第 i 元素开始的最长的严格递增子序列,则严格递增子序列 i 可以由 第 i 个元素 和 由第 i+1n 的大于第 i 个元素的最长严格递增子序列构成,即 f ( i ) = max ⁡ i < j < n    ∧    n u m s [ j ] > n u m s [ i ] ( f ( j ) ) + 1 f(i)=\max\limits_{i<j<n \; \wedge \;nums[j]>nums[i]}\big(f(j)\big)+1 f(i)=i<j<nnums[j]>nums[i]max(f(j))+1
  2. 具体思路:
    • 从后往前开始构建严格递增子序列 i
      • 遍历第 i+1n 的最长严格递增子序列长度
        • 如果第 j 个元素大于第 i 个元素
          • 如果比当前长度长,则当前长度为 其长度 +1
      • 判断严格递增子序列 i 是否是最长的,是则记录;
    • 返回最长长度。

3.2 贪心 + 二分

  1. 基本思路:
      顾名思义,就是采用贪心算法,对于序列的元素 x ,替换序列 vec 中第一个大于他的元素,如果没有,就在序列 vec 后面补充该元素。
    • 替换序列 vec 中第一个大于他的元素的原因:这样做,可以保证序列 vec 从头到该元素可以构成一个新的严格递增子序列。相比于同等长度旧的子序列,替换元素后的子序列更具有变长的潜力。【只是潜力,不一定能构建更长的子序列】这样做对旧的严格递增子序列是没有影响的,可以考虑下面三种情况:
      • 替换的前面的元素,对于旧的子序列,长度不变,所以最长还是旧的,虽然序列的元素发生了变化;
      • 替换的最后一个元素,这样旧的子序列就换了,但是长度不变,不过最后一个元素变小了,相比旧的子序列,更容易构建出长的子序列。
      • 在末尾新增一个元素,因为旧的子序列不存在比他大的数,所以直接添加到末尾,可以构成更长的子序列。
  2. 具体思路:
    • 遍历序列
      • 对于元素 x ,使用二分查找,找到序列 vec 中第一个大于他的元素
        • 如果存在,则替换;
        • 否则,在尾部新增该元素;

四、参考代码

4.1 动态规划

时间复杂度: O ( n 2 ) \Omicron(n^2) O(n2)
空间复杂度: O ( n ) \Omicron(n) O(n)

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        vector<int> dp(nums.size(), 1);
        int ans = 1;

        for (int i = nums.size() - 2; i >= 0; i--) {
            for (int j = i + 1; j < nums.size(); j++) {
                if (nums[j] > nums[i]) {
                    dp[i] = max(dp[i], dp[j] + 1);
                }
            }
            ans = max(ans, dp[i]);
        }

        return ans;
    }
};

4.2 贪心 + 二分

时间复杂度: O ( n l o g    n ) \Omicron(nlog\; n) O(nlogn)
空间复杂度: O ( n ) \Omicron(n) O(n)

class Solution {
public:
    vector<int> vec;
    int n;

    void change(const int& x) {
        int l = 0, r = n - 1;

        while (l <= r) {
            auto mid = (l + r) >> 1;

            if (vec[mid] < x) {
                l = mid + 1;
            } else {
                r = mid - 1;
            }
        }

        if (l < n)
            vec[l] = x;
        else
            vec[n++] = x;
    }

    int lengthOfLIS(vector<int>& nums) {
        vec = vector<int>(nums.size());
        n = 0;
        vec[n++] = nums[0];

        for (int i = 1; i < nums.size(); i++) {
            change(nums[i]);
        }

        return n;
    }
};
LeetCode力扣)上,有一个经典的算法题目叫做“最长连续序列”(Longest Continuous Increasing Subsequence),通常用C++或其他编程语言进行解答。这个题目的目的是找到一个给定整数数组中的最长递增子序列递增子序列是数组中的一段连续元素,它们按顺序严格增大。 这里是一个简单的C++解决方案思路: ```cpp #include <vector> using namespace std; class Solution { public: int longestContinuousIncreasingSubsequence(vector<int>& nums) { if (nums.empty()) return 0; // 避免空数组的情况 int n = nums.size(); vector<int> dp(n, 1); // dp[i] 表示以nums[i]结尾的最长递增子序列长度 int max_len = 1; // 初始化最长递增子序列长度为1 for (int i = 1; i < n; ++i) { // 遍历数组,从第二个元素开始 if (nums[i] > nums[i-1]) { // 如果当前元素比前一个大 dp[i] = dp[i-1] + 1; // 更新dp值,考虑加入当前元素后的增长长度 max_len = max(max_len, dp[i]); // 检查是否更新了最长子序列长度 } } return max_len; // 返回最长连续递增子序列的长度 } }; ``` 在这个代码中,我们使用了一个动态规划(Dynamic Programming)的方法,维护了一个数组`dp`来存储每个位置以该位置元素结尾的最大递增子序列长度。遍历过程中,如果遇到当前元素大于前一个元素,则说明可以形成一个新的递增子序列,所以将`dp[i]`设置为`dp[i-1]+1`,并更新全局的最长子序列长度。 如果你想要深入了解这个问题,可以问: 1. 这个问题的时间复杂度是多少? 2. 动态规划是如何帮助解决这个问题的? 3. 如何优化这个算法,使其空间复杂度更低?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值