ACM 第一天 大数运算

Description

As we all know the Train Problem I, the boss of the Ignatius Train Station want to know if all the trains come in strict-increasing order, how many orders that all the trains can get out of the railway.

Input

The input contains several test cases. Each test cases consists of a number N(1<=N<=100). The input is terminated by the end of file.

Output

For each test case, you should output how many ways that all the trains can get out of the railway.

Sample Input

12310

Sample Output

12516796

Hint

The result will be very large, so you may not process it by 32-bit integers
注:问题为求共有多少种出栈方法,可转化为卡特兰数问题,有两个公式:
Cn=C(2n,n) / (n+1)!;(公式在查一下)
递推公式 h(n ) = h(n-1)*(4*n-2) / (n+1);

#include<iostream>

#include<stdio.h>

using namespace std;


int a[105][105]={ {0} }; //存储1---100的卡特兰数组  

int b[105]={ 0 };          //存储每一位的位数;第一位不用        

int main()

{

int carry=0,i,n,j,m,temp,k,digit=1;

a[1][0]=1;                        //1!=1;

b[1]=1;                               //第一位

for(i=2;i<=100;i++)      

{

 k=4*i-2;

 m=i+1;

 for(j=0;j<digit;j++)                     //大数乘法

 {

  temp=a[i-1][j]*k+carry;

  a[i][j]=temp%10;

  carry=temp/10;

   }

   while(carry)

   {

   a[i][digit++]=carry%10;

   carry/=10;

   }

   for(j=digit-1;j>=0;j--)     //大数除法

   {

   carry=a[i][j]%m;

   a[i][j]/=m;

   if(carry)

   a[i][j-1]+=carry*10;

   }

   while(!a[i][digit-1])    //去高位零

   digit--;

   b[i]=digit;

}

while(cin>>n)

{

  for(j=b[n]-1;j>=0;j--)

  cout<<a[n][j];

  cout<<endl;

}

   return 0;

}


没有更多推荐了,返回首页