数学建模
jacobwe
请我去我去
展开
-
特征工程
目前业界有句话被广为流传:“数据和特征决定了机器学习的上限,而模型与算法则是逼近这个上限而已。”因此,特征工程做得好,我们得到的预期结果也就好。那特征工程到底是什么呢?在此之前,我们得了解特征的类型:文本特征、图像特征、数值特征和类别特征等。我们知道计算机并不能直接处理非数值型数据,那么在我们要将数据灌入机器学习算法之前,就必须将数据处理成算法能理解的格式,有时甚至需要对数据进行一些组合处理如分桶、缺失值处理和异常值处理等。这也就是特征工程做的事:提取和归纳特征,让算法最大程度地利用数据,从而得到更原创 2020-12-03 21:21:43 · 144 阅读 · 0 评论 -
AI的基本概念和数据建模调参
1监督学习:利用一组带标签的数据,学习从输入到输出的映射,然后用新数据对照映射关系得到映射结果,达到分类或回归目的D=(X, y) X:数据 y:标签 学习X y的映射关系 算法:线性回归、逻辑回归、朴素⻉贝叶斯、决策树、随机森林林、SVM、神 经⽹网络2 非监督学习输入数据没有被标记,也没有确定的结果D=(X) ⽆无标签 寻找X中的特征或规律律eg:⽤用户分层(兴趣/特征等等),降维⼯工...原创 2020-04-01 23:49:03 · 1661 阅读 · 0 评论 -
EDA
一,缺失数据概要 1 .缺失原因 分为无意的,有意的,不存在。2.缺失类型 ,缺失分为完全随机缺失,随机缺失,完全非随机缺失 3.缺失处理方法 删除法,数据补充(替换补充,拟合补充),虚拟变量,不处理二,缺失数据的类型 1,缺失分为完全随机缺失,随机缺失,完全非随机缺失 2 完全缺失- MCAR(missing completely ...原创 2020-03-23 22:44:32 · 1011 阅读 · 0 评论