机器学习面试题之随机森林(四)

自助聚合

每次从总样本矩阵中以有放回抽样的方式随机抽取部分样本构建决策树,这样形成多棵包含不同训练样本的决策树,以削弱某些强势样本对模型预测结果的影响,提高模型的泛化特性。

随机森林

在自助聚合的基础上,每次构建决策树模型时,不仅随机选择部分样本,而且还随机选择部分特征,这样的集合算法,不仅规避了强势样本对预测结果的影响,而且也削弱了强势特征的影响,使模型的预测能力更加泛化。

随机森林相关API:

import sklearn.ensemble as se
# 随机森林回归模型	(属于集合算法的一种)
# max_depth:决策树最大深度10
# n_estimators:构建1000棵决策树,训练模型
# min_samples_split: 子表中最小样本数 若小于这个数字,则不再继续向下拆分
model = se.RandomForestRegressor(max_depth=10, n_estimators=1000, min_samples_split=2)

1.1 随机森林算法思想

随机森林(Random Forest)使用多个CART决策树作为弱学习器,不同决策树之间没有关联。当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。

随机森林在生成决策树的时候用随机选择的特征,即使用Bagging方法。这么做的原因是:如果训练集中的某几个特征对输出的结果有很强的预测性,那么这些特征会被每个决策树所应用,这样会导致树之间具有相关性,这样并不会减小模型的方差。

1.2 随机森林建立过程

下面我们来描述一下随机森林的建立过程

  1. 第一步:原始训练集
    中有N个样本,且每个样本有W维特征。从数据集D中有放回的随机抽取x个样本(Bootstraping方法)组成训练子集,一共进行w次采样,即生成w个训练子集。

  2. 第二步:每个训练子集

    形成一棵决策树,形成了一共w棵决策树。而每一次未被抽到的样本则组成了w个oob(用来做预估)。

  3. 第三步:对于单个决策树,树的每个节点处从M个特征中随机挑选m(m<M)个特征,按照结点不纯度最小原则进行分裂。每棵树都一直这样分裂下去,直到该节点的所有训练样例都属于同一类。在决策树的分裂过程中不需要剪枝。

  4. 第四步:根据生成的多个决策树分类器对需要进行预测的数据进行预测。根据每棵决策树的投票结果,如果是分类树的话,最后取票数最高的一个类别;如果是回归树的话,利用简单的平均得到最终结果。

1.3 随机森林算法优缺点总结
随机森林是Bagging的一个扩展变体,是在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择。
随机森林简单、容易实现、计算开销小,在很多实际应用中都变现出了强大的性能,被誉为“代表集成学习技术水平的方法”。可以看出,随机森林对Bagging只做了小改动。并且,Bagging满足差异性的方法是对训练集进行采样;而随机森林不但对训练集进行随机采样,而且还随机选择特征子集,这就使最终集成的泛化性进一步提升。

随着基学习器数目的增加,随机森林通常会收敛到更低的泛化误差,并且训练效率是优于Bagging的。

总结一下随机森林的优缺点:
优点:

  • 训练可以高度并行化,对于大数据时代的大样本训练速度有优势。个人觉得这是的最主要的优点。
  • 由于可以随机选择决策树节点划分特征,这样在样本特征维度很高的时候,仍然能高效的训练模型。
  • 在训练后,可以给出各个特征对于输出的重要性。
  • 由于采用了随机采样,训练出的模型的方差小,泛化能力强。
  • 相对于Boosting系列的Adaboost和GBDT, RF实现比较简单。
  • 对部分特征缺失不敏感。

缺点有:

  • 在某些噪音比较大的样本集上,RF模型容易陷入过拟合。
  • 取值划分比较多的特征容易对RF的决策产生更大的影响,从而影响拟合的模型的效果。

1.4其他面试题

1、为什么要有放回的抽样?
保证样本集间有重叠,若不放回,每个训练样本集及其分布都不一样,可能导致训练的各决策树差异性很大,最终多数表决无法 “求同”,即最终多数表决相当于“求同”过程。

2、为什么RF的训练效率优于bagging?
因为在个体决策树的构建过程中,Bagging使用的是“确定型”决策树,bagging在选择划分属性时要对每棵树是对所有特征进行考察;而随机森林仅仅考虑一个特征子集。

3、随机森林需要剪枝吗?
不需要,后剪枝是为了避免过拟合,随机森林随机选择变量与树的数量,已经避免了过拟合,没必要去剪枝了。一般rf要控制的是树的规模,而不是树的置信度,剩下的每棵树需要做的就是尽可能的在自己所对应的数据(特征)集情况下尽可能的做到最好的预测结果。剪枝的作用其实被集成方法消解了,所以用处不大

4.随机森林如何处理缺失值
根据随机森林创建和训练的特点,随机森林对缺失值的处理还是比较特殊的。

  • 首先,给缺失值预设一些估计值,比如数值型特征,选择其余数据的中位数或众数作为当前的估计值。
  • 然后,根据估计的数值,建立随机森林,把所有的数据放进随机森林里面跑一遍。记录每一组数据在决策树中一步一步分类的路径。
  • 判断哪组数据和缺失数据路径最相似,引入一个相似度矩阵,来记录数据之间的相似度,比如有N组数据,相似度矩阵大小就是N*N。
  • 如果缺失值是类别变量,通过权重投票得到新估计值,如果是数值型变量,通过加权平均得到新的估计值,如此迭代,直到得到稳定的估计值。

其实,该缺失值填补过程类似于推荐系统中采用协同过滤进行评分预测,先计算缺失特征与其他特征的相似度,再加权得到缺失值的估计,而随机森林中计算相似度的方法(数据在决策树中一步一步分 类的路径)乃其独特之处。
原文链接:https://blog.csdn.net/weixin_41510260/article/details/94987861
转自https://blog.csdn.net/weixin_41510260/article/details/94987861?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522158510413419724846403734%2522%252C%2522scm%2522%253A%252220140713.130056874…%2522%257D&request_id=158510413419724846403734&biz_id=0&utm_source=distribute.pc_search_result.none-task

5.随机森林的过拟合问题
交叉验证

发布了18 篇原创文章 · 获赞 12 · 访问量 1796

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览