探索MariTalk与LangChain的完美结合:实现高效任务处理
近年来,AI语言模型在各个领域的应用越来越广泛。本文将带您探索一种由巴西公司Maritaca AI开发的AI助手——MariTalk,以及如何通过LangChain将其用于特定任务的实现。我们将通过两个示例展示如何使用MariTalk:一个是简单任务执行,另一个是结合RAG(Retrieval-Augmented Generation)的问答系统。
引言
本文旨在介绍如何通过LangChain使用MariTalk以执行特定任务。我们会展示如何调用API以及处理不符合MariTalk Token限制的长文档问题。
主要内容
安装
首先,我们需要安装LangChain库及其依赖项。可以通过以下命令完成:
!pip install langchain langchain-core langchain-community httpx
获取API Key
要使用MariTalk,您需要从chat.maritaca.ai获取API密钥。在“Chaves da API”部分可以找到。
示例1 - 宠物名字建议
在第一个示例中,我们将展示如何配置ChatMaritalk模型以提供宠物名字建议。以下是示例代码:
from langchain_community.chat_models import ChatMaritalk
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts.chat import ChatPromptTemplate
llm = ChatMaritalk(
model="sabia-2-medium", # 可用模型:sabia-2-small 和 sabia-2-medium
api_key="", <