敌兵布阵
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 60585 Accepted Submission(s): 25682
Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
Sample Output
Case 1: 6 33 59
典型的线段树问题,用线段树解决这类问题可以快速修改区间值,同时避免了遍历带来的多余时间浪费。代码很清晰,很容易看懂。
#include<iostream>
#include<cstdio>
using namespace std;
int n;
int tr[150000];//数组开大点,防止超内存
int a[50001];
int add,q,ql,qr;
void build(int L,int R,int rt){
if(L==R){
tr[rt]=a[L];
}else{
int M=(L+R)/2;
build(L,M,rt*2);
build(M+1,R,rt*2+1);
tr[rt]=tr[rt*2]+tr[rt*2+1];
}
}//构建线段树结构
void Add(int L,int R,int rt){
if(L==q&&R==q){
tr[rt]+=add;
}else{
int M=(L+R)/2;
if(q>M) Add(M+1,R,rt*2+1);
if(q<=M) Add(L,M,rt*2);
tr[rt]+=add;
}
}//修改区间值(增大)
void Sub(int L,int R,int rt){
if(L==q&&R==q){
tr[rt]-=add;
}else{
int M=(L+R)/2;
if(q>M) Sub(M+1,R,rt*2+1);
if(q<=M) Sub(L,M,rt*2);
tr[rt]-=add;
}
}//修改区间值(减小)
int query(int L,int R,int rt){
if(L>=ql&&R<=qr){
return tr[rt];
}else{
int M=(L+R)/2;
if(ql>M) return query(M+1,R,rt*2+1);
if(qr<=M) return query(L,M,rt*2);
return query(L,M,rt*2)+query(M+1,R,rt*2+1);
}
}//查询区间值
int main(){
int T,num=0;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
printf("Case %d:\n",++num);
build(1,n,1);
char ch[5];
while(scanf("%s",ch)!=EOF){
if(ch[0]=='E') break;
if(ch[0]=='Q'){
scanf("%d%d",&ql,&qr);
printf("%d\n",query(1,n,1));
}
if(ch[0]=='A'){
scanf("%d%d",&q,&add);
Add(1,n,1);
}
if(ch[0]=='S'){
scanf("%d%d",&q,&add);
Sub(1,n,1);
}
}
}
return 0;
}