22、协作机器人安全与保障:挑战与应对策略

协作机器人安全与保障:挑战与应对策略

1. 协作机器人安全的重要性

研究的一个重要目标是让协作机器人摆脱高度受限的封闭环境,以提高生产力。确保协作机器人的安全性是至关重要的一个方面。相较于安全问题,机器人的安全性受到的关注较少,而协作机器人特有的安全问题几乎未得到关注。我们可以借鉴现有的保障机器人安全的尝试,并找出协作机器人面临的新挑战。

一些安全问题会直接影响安全,例如,任何能够控制协作机器人物理动作的攻击,都可能使机器人做出危险的行为,甚至对协作人员发动物理攻击。而有些问题,如个人数据泄露,可能不会产生明显的安全影响,但必须按照相关安全法规(如 GDPR)来解决。

2. 威胁分析

2.1 威胁建模

威胁建模是利用抽象概念来帮助发现安全风险的过程,其结果通常被称为威胁模型。在机器人领域,威胁建模定义了与机器人及其软硬件组件相关的风险,并提供解决或减轻这些风险的方法。一般来说,威胁建模是找出正在构建的系统可能出现的安全问题,有助于应对各类攻击,从而交付更安全的产品。

2.2 常见的威胁建模方法

  • STRIDE :这是一种常用的威胁建模方法,由 Kohn - fekder 和 Garg 在 1999 年引入。STRIDE 代表欺骗(Spoofing)、篡改(Tampering)、否认(Repudiation)、拒绝服务(Denial of Service)和权限提升(Elevation of Privilege)。该方法最近被用于一份关于机器人威胁建模的文档中。
  • Trend Micro 的方法
内容概要:本文详细介绍了如何使用Hugging Face Transformers库进行大模型推理,涵盖环境配置、模型下载、缓存管理、离线使用、文本生成、推理pipeline及模型量化技术。重点讲解了使用LLMs进行自回归生成的核心流程,包括token选择策略、生成参数配置(如max_new_tokens、do_sample)、填充方式(左填充的重要性)以及常见陷阱的规避方法。同时深入探讨了多种量化技术(如GPTQ、AWQ、bitsandbytes的4位/8位量化),并通过实例演示了如何加载本地模型、应用聊天模板、结合Flash Attention优化性能,并实现CPU-GPU混合卸载以应对显存不足的问题。; 适合人群:具备Python编程基础和深度学习基础知识,熟悉Transformer架构,从事NLP或大模型相关工作的研究人员、工程师和技术爱好者;尤其适合需要在资源受限环境下部署大模型的开发者。; 使用场景及目标:①掌握Hugging Face Transformers库的核心API,实现大模型的本地加载高效推理;②理解和避免大模型生成过程中的常见问题(如输出过短、重复生成、填充错误等);③应用量化技术降低大模型内存占用,实现在消费级GPU或CPU上的部署;④构建支持批量处理和多模态任务的推理流水线。; 阅读建议:此资源理论实践紧密结合,建议读者边阅读边动手实践,复现文中的代码示例,并尝试在不同模型和硬件环境下进行调优。重点关注生成配置、量化参数和设备映射策略,结合具体应用场景灵活调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值