Python 数据的分析、可视化与机器学习应用
1. 数据可视化工具——箱线图
箱线图是用于展示数值数据分布的工具,尤其适用于跨不同组进行数据比较。它能让人一眼获取数据的高层次信息,例如数据的对称性、偏度、方差以及异常值等细节。
2. 机器学习在业务运营中的应用概述
机器学习聚焦于理解和开发“学习”过程,即利用数据提升特定任务表现的过程,它是人工智能的一部分。借助机器学习,企业能够高效地从非结构化数据中提取知识。无需大量编程,机器学习算法就能从给定数据集中迭代学习,理解数据中的模式和行为。
2.1 技术要求
- 运行 Python 3.7 及以上版本的 Jupyter 笔记本实例。若有 Google Drive 账户,也可使用 Google Colab 笔记本。
- 具备基本的数学和统计概念知识。
- 从指定 GitHub 页面下载示例数据集,原始数据源为 https://python.cogsci.nl/numerical/statistics/。
2.2 t 检验验证变化效果
2.2.1 独立样本 t 检验
当测量某些行动对特定用户群体的影响时,可使用 t 检验来验证这些行动是否对目标群体产生了显著影响。t 检验用于比较两组数据的均值,以确定某种方法或处理是否对目标群体有影响,或者两组数据是否存在差异,常用于假设检验。
以 Matzke 等人(2015)的数据集为例,参与者需完成记忆单词列表的挑战。一组参与者在记忆间隔期间专注于显示屏上的中央固定点,另一组则持续水平移动眼睛。为确
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



