ML
JANESTAR
细节决定成败,付出决定收获
展开
-
数据降维之PCA算法的理解(机器学习公开课)
目的:在机器学习过程中,我们常常面对存在成千上百的特征集合,这些高维度的特征集合存在冗余信息,同时也带来了巨大的计算开销。因此把高维数据映射到低维度空间,甚至是可视化的3维或2维空间是我们希望看到的。尽管降维存在数据丢失,但是只要保证主要特征不丢失,在一些情况下是值得采纳的。 下面探讨一种称作主成分分析(PCA)的方法来解决部分上述问题。PCA的思想是将n维特征映射到k维上(k2. PCA转载 2015-03-17 21:10:31 · 1633 阅读 · 1 评论 -
No handlers could be found for logger "sklearn.datasets.twenty_newsgroups"
在使用sklearn进行文本分类时,我们需要引入数据包。当我们使用from sklearn.datasets import fetch_20newsgroups实际上会自动给你下载 20newsgroups 到scikit_learn_data 文件夹下面。但是往往会出现No handlers could be found for logger "sklearn原创 2015-04-09 13:19:28 · 6293 阅读 · 2 评论