/*
*有N(N<=10000)头牛,每头牛都想成为most poluler的牛;
*给出M(M<=50000)个关系,如(1,2)代表1欢迎2,关系可以传递,但是不可以相互,即1欢迎2不代表2欢迎1;
*但是如果2也欢迎3那么1也欢迎3;
*给出N,M和M个欢迎关系,求被所有牛都欢迎的牛的数量;
*
*算法分析:
*求有向图的强连通分量+拓扑排序;
*利用Tarjan算法求有向图的强连通分量;
*Tarjan算法是基于DFS算法,每个强连通分量为搜索树中的一棵子树;
*搜索时,把当前搜索树中的未处理的结点加入一个栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量;
*当dfn[u]==low[u]时,以u为根的搜索子树上所有结点是一个强连通分量;
*dfn数组表示深度优先数(访问次序),low[u]表示从u或者u的子孙出发通过回边可以到达的最低深度优先数;
*low[u]=min{dfn[u],min{low[w]|w是u的一个子女},min{dfn[v]|v与u邻接,且(u,v)是一条回边}};
*
**/
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
const int M=10010;
struct Edge
{
int v,to;
} edge[5*M];
int head[M];
int edgeNum;
int cnt,scnt,begin,n,m;
int low[M],dfn[M],stack[M],id[M],out[M];
int ans[M];
void add(int a,int b)
{
edge[edgeNum].v=b;
edge[edgeNum].to=head[a];
head[a]=edgeNum++;
}
void dfs(int x)
{
low[x]=dfn[x]=++cnt;
stack[++begin]=x;
int v;
for(int i=head[x]; i!=-1; i=edge[i].to)
{
v=edge[i].v;
if(!dfn[v])
{
dfs(v);
low[x]=min(low[v],low[x]);
}
else if(!id[v])
{
low[x]=min(dfn[v],low[x]);
}
}
if(low[x]==dfn[x])
{
scnt++;
int tmp=0;
do
{
tmp++;
v=stack[begin--];
id[v]=scnt;
}
while(v!=x);
ans[scnt]=tmp;
}
return ;
}
void Tarjan()
{
cnt=scnt=begin=0;
memset(dfn,0,sizeof(dfn));
for(int i=1; i<=n; i++)
{
if(!dfn[i])
dfs(i);
}
return;
}
int main()
{
//freopen("C:\\Users\\Administrator\\Desktop\\kd.txt","r",stdin);
int t,a,b;
while(~scanf("%d%d",&n,&m))
{
edgeNum=0;
memset(id,0,sizeof(id));
memset(head,-1,sizeof(head));
for(int i=0; i<m; i++)
{
scanf("%d%d",&a,&b);
add(a,b);
}
Tarjan();
if(scnt==1)
{
printf("%d\n",n);
continue;
}
memset(out,0,sizeof(out));
for(int i=1; i<=n; i++)
for(int j=head[i]; j!=-1; j=edge[j].to)
{
int v=edge[j].v;
if(id[i]!=id[v])
{
out[id[i]]++;
}
}
int res=0;
for(int i=1; i<=scnt; i++)
{
if(!out[i])
{
if(!res)
res=ans[i];
else
{
res=0;
break;
}
}
}
printf("%d\n",res);
}
}
PKU2186(Popular Cows)+强连通分支Tarjan算法+缩点
最新推荐文章于 2017-08-12 09:27:42 发布