自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(47)
  • 收藏
  • 关注

原创 【前瞻创想】Kurator与Karmada深度融合:多集群编排技术的协同进化与企业级实践

《分布式云原生技术演进与实践》摘要:本文深入解析Kurator与Karmada协同架构,重点剖析Karmada的多集群调度算法与Work API资源分发机制,展示Kurator如何通过统一控制面增强企业级能力。基于13年实战经验,分享了混合云部署模式、性能优化技巧(调度延迟从1.8秒降至320毫秒)及自愈策略(故障恢复时间从42分钟缩短至6.5分钟)。前瞻性探讨了AI驱动调度、零信任安全等未来方向,为构建高可用多活架构提供完整解决方案。全文体现从技术实现到业务价值的转化,助力企业拥抱分布式云原生未来。

2025-12-18 23:52:42 900

原创 Ascend C算子工程项目全链路构建实战

摘要:本文基于昇腾开发实战经验,系统阐述CANN框架下算子工程项目的构建方法。提出四层工程架构设计,包含Tiling动态调整算法、双缓冲流水线优化等核心技术,通过实际案例验证可将开发周期从月级缩短至周级,代码复用率达85%以上。详细解析了算子开发流程,包括环境配置、工程创建、调试优化等环节,并针对内存管理、多核同步等常见问题提供解决方案。最后展望了AI辅助生成、智能调优等未来发展趋势,为开发者提供从理论到实践的完整指导。

2025-12-16 17:00:40 529

原创 Ascend C大词表Embedding Lookup算子深度优化实战

本文深入探讨基于AscendC的大词表EmbeddingLookup算子优化技术,提出通过分块内存访问、动态批处理流水线和混合精度压缩三大核心技术,实现100GB词表加载延迟降低72%、QPS提升3.8倍,并在FP16下保持<0.2%精度损失。关键技术包括三级流水线+双缓冲机制(85%硬件利用率)、向量化Gather操作(95%UB命中率)和动态Shape支持。文章提供BERT-Large优化实例、千亿参数部署方案和六大诊断工具,形成从单核算子开发到万卡集群部署的完整技术图谱,为突破AI计算中的&qu

2025-12-16 16:48:51 597

原创 Ascend C内存越界访问的“侦探术“:从错误地址到Buffer/Tensor安全

摘要:本文深入剖析昇腾(Ascend)AI处理器算子开发中的内存越界问题,基于250+真实案例与CANN架构特性,提出五层防御体系:1)编译期静态检查;2)安全编码规范;3)运行时动态验证;4)硬件保护机制;5)系统监控优化。重点解析GlobalMemory、UnifiedBuffer等内存层次的特殊越界模式(如向量化静默越界),提供从错误日志解密、边界检查注入到影子内存技术的全链路解决方案。通过矩阵转置等典型案例,展示如何平衡性能与安全,最终形成包含十大安全准则的企业级实践方案,为昇腾开发者构建可靠的内存

2025-12-15 18:44:59 663

原创 庖丁解“核”:Ascend C Kernel函数的并行计算模型与执行揭秘

真正的高性能计算不是关于编写代码,而是关于理解数据在硬件中的流动。Ascend C Kernel的设计精髓在于,它既提供了足够的抽象来保持开发效率,又保留了必要的控制力来实现极致性能。数据局部性优先:90%的性能问题源于内存访问并行暴露最大化:让硬件看到所有可并行的机会平衡的艺术:在抽象与控制之间找到最佳平衡点随着大模型时代的到来,算子开发正从"专家技能"变为"工程师必备"。掌握Ascend C Kernel的深度知识,不仅能让你的应用跑得更快,更能让你真正理解AI计算硬件的本质。昇腾训练营简介。

2025-12-14 20:35:16 816

原创 ops-nn算子库生态纵览 - 构建健壮的AI算力基石

摘要 本文系统解析了华为CANN架构中ops-nn算子库的核心技术与优化策略。作为连接AI算法与NPU硬件的关键组件,ops-nn通过三层优化模型实现高性能计算:1)基于AICore微架构的硬件感知设计;2)量化矩阵乘的深度优化,包括动态Tiling策略和双缓冲技术;3)存储层次协同的数据搬运优化。实践表明,该方案可使INT8矩阵乘算力达到128 TFLOPS,硬件利用率超80%。文章还提供了企业级部署架构、性能调优指南及常见问题解决方案,为开发者构建高效AI计算生态提供技术参考。

2025-12-11 20:40:21 991

原创 从原型到产品:融合算子的单元测试、集成测试与持续集成

本文系统探讨了昇腾AscendC融合算子的工程化测试策略,提出基于测试金字塔模型的全流程质量保障方案。通过分层测试架构设计,覆盖核函数单元测试到框架集成的各环节,并实现容器化部署环境。重点展示了RMSNorm+SwiGLU融合算子的单元测试实现、多核协同测试框架及性能基准测试体系。基于GitLab CI构建的CI/CD流水线将测试周期从周级缩短至小时级,缺陷逃逸率降低至5%以下。企业级实践案例表明,该方案在LLaMA-7B模型优化中使测试通过率提升至99.5%,性能提升52.4%。文章还提供了系统性故障排查

2025-12-11 20:09:45 1065

原创 Ascend C调试技巧 - 常见错误与日志分析深度指南

调试能力是区分“能跑通的代码”和“能上线的算子”的唯一标准。那些年我见过最离谱的Bug,从AI Core神秘静默崩溃,到结果误差在第七位小数点后随机波动。这篇文章,我不给你列枯燥的错误码清单,我要给你一套能带走的“破案工具箱”和“刑侦思维”。第一,“结果错了,为啥?​ 我们将用二分法+ASAN+GDB三板斧,从海量代码中定位幽灵访越界。第二,“跑得太慢,卡在哪?​ 我们将深入Ascend Insight时间线,像侦探一样解读每个波峰波谷,揪出性能真凶。

2025-12-06 19:19:24 818

原创 Ascend C算子开发实战 - 以AsNumpy的einsum为例,解析爱因斯坦求和的NPU加速之道

计算图优化:从运行时解释到编译期优化,性能提升2-3个数量级硬件感知设计:针对NPU架构特化的内存访问模式和计算流水线智能策略选择:基于计算特征的自动优化策略选择昇腾训练营简介:2025年昇腾CANN训练营第二季,基于CANN开源开放全场景,推出0基础入门系列、码力全开特辑、开发者案例等专题课程,助力不同阶段开发者快速提升算子开发技能。获得Ascend C算子中级认证,即可领取精美证书,完成社区任务更有机会赢取华为手机,平板、开发板等大奖。报名链接期待在训练营的硬核世界里,与你相遇!

2025-12-05 23:26:25 594

原创 构建自定义融合算子 以MlaProlog为蓝本的Ascend C开发方法论

本文深入解析CANN架构中的混合计算模型与控制(MCMC)技术,提出三大核心技术突破:1)动态计算路径选择实现4.2倍性能提升;2)多层次资源管理架构使资源利用率达92%;3)混合精度协调算法平衡计算效率与精度损失。通过状态机模型、计算图智能划分、动态资源调整等创新设计,MCMC成功应用于万亿参数模型训练,将收敛时间从28天缩短至10天。文章提供完整的算法实现代码、性能监控体系和故障诊断框架,为AI基础设施开发者提供关键技术参考,展现了混合计算在下一代AI系统中的核心价值。

2025-12-05 23:13:38 716

原创 MateChat在代码开发中的创新:智能代码补全与自动重构

📝 摘要:本文详细介绍了MateChat智能编程助手的核心技术架构与实现方案。系统采用多粒度代码理解引擎、上下文感知补全系统和安全重构框架,显著提升了传统IDE的局限性(补全准确率从58%提升至94%)。通过Python/TypeScript代码实现展示了毫秒级响应、95%+补全准确率和零误伤重构能力。实战数据显示,该系统使编码效率提升68%,Bug率降低42%,为企业级智能编程提供了生产级解决方案。文章还探讨了性能优化策略、企业集成方案及未来AI结对编程等发展方向,为开发者生产力提升提供了创新思路。

2025-12-04 06:53:54 848

原创 DevUI国际化与本地化:多语言资源动态加载与RTL布局适配

本文系统介绍了企业级前端应用的国际化(i18n)与本地化(l10n)解决方案。通过分层架构设计、动态资源加载和智能回退算法三大核心技术,解决了多语言应用中的性能瓶颈、布局兼容性和文化差异等核心问题。方案包含完整的React国际化提供商实现、RTL布局自动镜像引擎以及本地化格式组件,并经过华为全球化产品验证,显著提升了加载性能(从3.2s降至1.4s)和RTL布局准确率(85%到99.5%)。该架构实现了从资源管理到文化适配的全链路解决方案,为应用出海提供了生产级技术基础。

2025-12-04 06:46:33 601

原创 PerToken量化技术在Ascend C中的实现 - 动态精度适配与大模型推理加速

本文基于CANN量化Matmul开发样例技术文档中动态量化和精度适配相关技术,深度解析PerToken量化技术在Ascend C中的实现原理。重点探讨动态精度适配(Dynamic Precision Adaptation)Token级量化(Token-wise Quantization)在线校准(Online Calibration)​ 等核心技术。结合素材中NPU硬件特性和大模型推理需求,详细分析PerToken量化如何实现3-5倍推理加速同时保持99%+的精度保持率。

2025-12-03 16:59:54 849

原创 MlaProlog算子性能调优指南 Ascend C工具链实战解析

本文深入探讨基于Ascend C工具链的MlaProlog算子性能调优方法论。通过系统介绍性能分析工具链概览,详细解析典型性能瓶颈模式识别技术,并结合实际案例展示基于Profiling数据的迭代优化流程。文章重点探讨关键参数(Tiling策略、Pipe Depth等)的敏感度分析,提供达到理论峰值性能的实践路径,为AI开发者提供从基础理论到高级优化的完整性能调优解决方案。本文系统性地介绍了MlaProlog算子在Ascend C工具链下的性能调优方法论。

2025-12-03 16:50:01 569

原创 Ascend C在真实AI模型中的应用 - 以ResNet50优化为例

本文以ResNet50模型优化为实战案例,系统解析Ascend C在复杂AI模型中的应用方法论。涵盖模型结构分析计算热点识别算子级优化系统级调优等完整技术链。通过卷积算子极致优化内存访问模式重构多核并行策略等核心技术,展示如何将ResNet50在昇腾910B上的推理性能从基准150fps提升至2100fps。包含基于真实生产数据的性能分析瓶颈定位和优化验证,为AI模型的高性能部署提供完整参考。基于ResNet50优化实战,我总结出AI模型优化的关键原则热点优先原则:89.7%的卷积计算获得最大优化投入。

2025-12-02 19:03:11 1003

原创 Triton Kernel 开发步骤详解 - 从 IR 到昇腾硬件部署

摘要:本文深入解析Triton编译器在昇腾CANN生态中的应用,揭示从Python代码到Ascend硬件指令的完整编译流程。文章首先打破对Triton作为"Python装饰器"的认知误区,详细剖析其分层编译架构;随后通过向量加法等实例,展示Triton IR到昇腾后端的Lowering过程;提供Swish算子的完整开发示例,包括BLOCK_SIZE调优等实践技巧;最后展望Triton与昇腾生态的融合发展。内容涵盖编译原理、性能优化方法论及实战指南,帮助开发者掌握高阶算子开发的核心技术,实

2025-12-02 18:54:48 572

原创 Ascend C 算子部署与系统工程 - 从开发到生产的全链路实践

本文系统介绍了AscendC算子从开发到部署的全流程工程实践。通过构建自动化CI/CD流水线、容器化部署方案(Docker+Kubernetes)、动态配置管理系统、多层次监控体系(Prometheus+Grafana)以及安全加固措施,形成了一套完整的算子部署方法论。重点包括:1)企业级构建系统设计与自动化测试;2)生产级容器镜像构建与K8s调度策略;3)实时指标收集与智能告警机制;4)版本管理与自动化回滚策略;5)性能调优与容量规划方案。该体系为AscendC算子的工业化应用提供了可靠保障,显著提升了部

2025-12-01 11:50:18 625

原创 Ascend C 原子操作与并行编程:以AtomicAdd为例的数据同步与一致性保障

本文深入探讨昇腾平台Atomic原子操作在多核并行环境下的实现与优化。针对EmbeddingDenseGrad等梯度计算场景的数据竞争问题,详细解析了AtomicAdd的硬件实现机制、内存一致性模型和性能优化策略。通过InternVL大模型训练案例,展示了如何正确使用原子操作解决并行写入冲突,在保证结果正确性的同时实现3.2倍性能提升。文章包含源码级实现解析、性能优化技巧、企业级实战经验以及高级调试方法,为开发者提供了从理论到实践的完整指导。最后总结了原子操作的最佳实践和未来技术发展方向,强调硬件原子操作与

2025-12-01 00:23:54 721

原创 自动调优在Triton-on-Ascend中的应用 - 从参数优化到性能极致挖掘

本文深入解析Triton-on-Ascend平台的自动调优技术体系,展示其在昇腾AI处理器上的优化效果。通过智能参数空间探索、贝叶斯优化和多目标优化等核心算法,自动调优相比手工调优可提升算子性能60%以上。文章包含矩阵乘法和卷积算子的完整调优案例,以及推荐系统、大语言模型等实战场景的优化数据。实测显示,自动调优在不同类型算子上可获得57%-64%的性能提升,同时提供故障诊断工具和最佳实践指导。最后介绍了昇腾CANN训练营的认证与奖励机制,助力开发者掌握自动调优技能。

2025-11-30 23:59:41 535

原创 攻克非对齐Shape难题:Ascend C复杂Tiling策略实战

摘要:本文针对AscendC算子开发中的非对齐Shape数据处理问题,提出了一套完整的动态Tiling优化方案。通过分析尾块边界判断、计算流水线中断和内存访问模式破坏三大核心挑战,设计了智能Tiling参数计算模型和增强型核函数架构。重点介绍了尾块特化处理技术,包括感知型DoubleBuffer优化和向量化内存访问优化。性能测试显示,该方案在非对齐场景下可提升性能28%-30%,同时不影响对齐场景的表现。企业案例验证表明,该方案能有效降低处理延迟28.9%,提升吞吐量38.6%。文章还提供了故障排查指南,并

2025-11-29 18:02:20 813

原创 跨越鸿沟 - 深入剖析Ascend C中Host与Device的协同工作机制摘要

本文系统解析华为AscendC中级认证的核心技术要点与备考策略。基于13年昇腾开发经验,详细剖析了算子工程架构设计、Tiling策略优化、内存层次优化等四大考核模块,提供了标准化工程模板、高级Tiling算法实现、向量化内存访问优化等实战代码示例。文章包含认证价值分析、60天备考计划、性能优化评分标准及常见陷阱规避指南,特别强调Tiling和内存优化占总分55%的关键地位。通过模拟题解析展示卷积算子优化等实际场景解决方案,并推荐官方调试工具链。认证不仅提升25-40%薪资竞争力,更能构建完整的异构计算知识体

2025-11-29 17:55:55 727

原创 Tiling策略实现Ascend AI处理器上的高效数据分块与并行计算

摘要:本文深入探讨AI计算中的Tiling技术,从理论到实践全面解析Host侧与Kernel侧的协同优化。针对昇腾AI处理器的内存墙问题,提出多维分块、动态调整和分层优化策略,通过数学建模实现3-5倍的性能提升。文章详细介绍了智能Tiling引擎设计、内存访问优化方法,以及矩阵乘法等实战案例,并给出自动化Tuning系统的最佳实践。数据显示,优化后的Tiling技术在不同场景可获得2-8倍的性能提升,为AI计算提供核心加速方案。

2025-11-23 23:58:57 991

原创 Ascend C 入门指南:全场景 AI 算子的核心基础

AscendC是昇腾AI处理器的专用编程语言,基于C/C++标准规范设计,通过多层次硬件抽象和并行编程模型为AI算子开发提供高效解决方案。本文系统解析了AscendC的三大核心:1)昇腾AI软硬件架构,包括CANN异构计算体系和达芬奇架构;2)编程模型原理,涵盖矢量编程范式、SPMD并行设计和三级流水线机制;3)完整开发流程,从向量加法算子实现到高级优化技术。通过双缓冲优化、Matmul调优等实战案例,展示了性能提升方法,并提供了大模型算子优化和故障排查指南。文章为AI系统开发者提供了从基础到进阶的全链路技

2025-11-19 23:53:30 711

原创 Rust 内存布局与性能优化:从字节对齐到缓存友好性

本文深入探讨了Rust内存布局对程序性能的影响及优化策略。通过分析默认布局规则、#[repr]属性(C、packed、align)的原理与应用,揭示了字节对齐和填充机制的关键作用。重点讲解了False Sharing问题及其解决方案(缓存行填充),数据结构布局优化技巧,以及SIMD指令集的高效利用方法。文章还介绍了自定义分配器(如Arena)的实现原理和性能优势,并通过粒子系统案例展示了实战优化效果。最后提出了性能与安全性平衡、跨平台兼容性等深入讨论点,为开发者提供了从基础到进阶的系统级性能优化指南。

2025-10-30 10:57:54 956

原创 Rust 数据库驱动开发与 ORM 设计:从连接池到查询构建器

传统数据库访问模式现代 ORM 模式// 查询模型(从数据库读取)// 插入模型(写入数据库)让我们从零构建一个类型安全的查询构建器!陷阱表现解决方案连接泄漏连接池耗尽确保连接正确归还(使用 Drop trait)N+1 查询性能急剧下降使用 JOIN 或批量查询SQL 注入安全漏洞始终使用参数化查询大事务锁表过久减小事务范围,使用乐观锁未处理的错误程序崩溃合理的错误处理和重试机制核心要点✅原生驱动- 提供底层控制,适合简单场景✅连接池- 必须使用,显著提升并发性能✅SQLx。

2025-10-30 10:52:41 931

原创 Rust 网络编程实战:底层 Socket 到高性能服务器的完整指南

摘要:本文系统讲解Rust网络编程,从基础TCP/UDP实现到高级异步框架。内容涵盖:1)网络编程演进三个阶段;2)Rust优势如内存安全和零成本异步;3)TCP基础与多线程解决方案;4)非阻塞I/O和事件循环机制;5)Tokio异步运行时及实战案例;6)性能测试显示Tokio支持百万级并发;7)高级应用包括HTTP服务器、负载均衡器和WebSocket实现;8)常见陷阱与优化技巧;9)协议对比和QUIC实现。通过递进式案例帮助开发者掌握Rust网络编程核心原理与最佳实践。

2025-10-30 10:43:28 952

原创 Rust 宏系统深度剖析:从声明宏到过程宏的完整指南

Rust 宏系统(Macro System)是其元编程(Metaprogramming)能力的核心,分为声明宏(Declarative Macros)和过程宏(Procedural Macros)两大类。声明宏通过模式匹配和代码替换实现简洁的语法糖;过程宏则提供了操作 TokenStream 的能力,可实现自定义派生(Derive)、属性宏(Attribute)和函数宏(Function Macro)。

2025-10-30 10:37:07 932

原创 Rust 性能优化与最佳实践:编写极致性能的代码

Rust 以其“零成本抽象”和与 C/C++ 相媲美的性能而著称。然而,仅仅使用 Rust 并不总能自动获得最佳性能。本文将深入探讨 Rust 的性能分析工具、常见的性能陷阱、内存布局优化以及高级并发模式,通过实战案例和最佳实践,帮助你编写出真正极致性能的 Rust 代码。Rust 提供了编写极致性能代码所需的所有工具,但性能优化是一个“测量-分析-优化”的循环过程。✅零成本抽象:泛型、Trait、迭代器编译后无运行时开销。✅精细控制:内存布局、unsafe、FFI 提供了底层控制力。✅强大工具。

2025-10-30 10:23:49 951

原创 仓颉跨语言混合编程:FFI实战与性能优化

摘要:本文深入探讨了仓颉语言外部函数接口(FFI)机制,重点分析了其在HarmonyOS生态中实现跨语言互操作的关键技术。文章系统阐述了FFI的核心原理,包括数据类型映射、内存管理和安全抽象设计,并通过封装zlib压缩库的实战案例,展示了如何在保持安全性的前提下实现高效调用。特别强调了通过RAII模式管理C资源、批处理优化减少调用开销、零拷贝技术提升性能等实践策略。最后讨论了FFI在平衡生态复用与语言安全性方面的价值,为开发者提供了在仓颉中安全高效整合现有C/C++生态的系统指导。

2025-10-29 19:46:39 659

原创 仓颉跨端适配实战:一次编写,多端部署

本文深入探讨了HarmonyOS仓颉语言与ArkUI框架实现跨端适配的核心技术。文章系统阐述了响应式布局、自适应UI和资源限定符三大原理,通过构建新闻应用演示了手机单栏布局、平板双栏响应式布局和智慧屏栅格布局的具体实现。重点讲解了设备类型判断、条件渲染、弹性布局、栅格系统等技术要点,并提供了资源限定符统一样式的最佳实践。本文为开发者提供了在多种设备形态上实现"一次开发,多端部署"的完整解决方案和实用建议,对HarmonyOS跨端开发具有重要指导意义。

2025-10-29 19:24:00 651

原创 仓颉HarmonyOS服务开发:后台任务与数据持久化

本文探讨了HarmonyOS后台开发与数据持久化方案。介绍了ServiceAbility作为执行后台任务的基础组件,WorkScheduler作为高效的任务调度机制,以及KVStore、关系型数据库和文件系统等数据持久化技术。重点分析了仓颉语言在后台开发中的优势:其协程模型适合处理IO密集型操作,所有权系统保障内存安全,Result类型提升错误处理能力,同时具备接近C/C++的性能。文章还提供了最佳实践建议,包括选择合适的后台机制、任务幂等性设计、资源管理和错误处理策略等,帮助开发者构建可靠高效的Harmo

2025-10-29 19:07:12 920

原创 仓颉开发HarmonyOS应用:ArkUI组件开发实战

用户界面(UI, User Interface)是应用程序与用户交互的直接媒介,其质量直接影响用户体验。传统的UI开发模式,如Android View系统或iOS UIKit,大多采用命令式(Imperative)编程,开发者需要手动操作UI元素来响应状态变化,代码往往冗长且难以维护。HarmonyOS引入了ArkUI框架,拥抱了现代UI开发的趋势——声明式编程。开发者只需描述在特定状态下UI应该呈现的样子,框架会自动处理UI的创建、更新和销毁,极大地简化了开发逻辑。

2025-10-29 18:48:48 668

原创 仓颉三方库生态构建:从开发到发布

本文全面介绍了仓颉语言(HarmonyOS原生开发语言)第三方库的开发流程与最佳实践。内容包括:1. 标准库项目结构与包管理器功能;2. API设计原则、模块化封装和依赖管理;3. 单元测试、集成测试与文档测试规范;4. 文档编写要求与示例代码布局;5. 版本控制策略(遵循SemVer)和发布流程;6. 开源协作指南与社区贡献规范。旨在帮助开发者构建高质量的仓颉第三方库,促进HarmonyOS生态繁荣发展。文章特别强调了最小化API设计、清晰的文档注释、严格的测试覆盖等重要原则。

2025-10-29 18:24:35 636

转载 Object 体系结构常用方法

Object 体系结构Monobehavior 常用方法     继承函数:       物体销毁:            static Destroy()            static DestroyImmdiate()            static DontDestroyOnLoad()        物体生成:            static

2016-05-20 10:05:00 467

转载 UGUI学习笔记(Button、Toggle)

【Button控件】说起来这是一个组合控件,由Image和Text组成,如下图:  Button就是一个Image控件,上再加个Button的组件。这样的话Image的特性同样适用在Button上。这个我就不多了解了,要具体说下Button组件。 这个选项是表示该控件是否能交互,会产生  和  的两个状态,一个可以点击,一个无法点击。Transition是设

2016-05-20 10:02:43 3077

转载 A*算法

//定义格子的枚举类型  public enum GridType  {        Normal, Obstacle, Start, End  }  [csharp] view plain copy定义格子类  public class Grid : IComparable  {      public i

2016-05-09 20:19:30 468

转载 漫游场景

制作风景漫游Demo 1、新建场景并保存 2、创建地形并设置地形大小  3、调整地形高度(注意要Flatten一下) 4、地形提升(按shift下降)  5、添加纹理贴图    同样地,选择其他贴图 6、选择种树工具,并添加树木 7、添加水资源并调整尺寸  8、添加第一人称角

2016-05-09 10:26:07 694

转载 unity小技巧

关于这些技巧这些技巧并不是适用于每一个项目。    1.基于我的经验它们适用于3到20人的小团队。    2.一些结构性,重用性,清晰度等等上的技巧使用需要付出性能上的开销代价,根据你团队和项目的大小来决定是否需要付出这些开销代价。    3.许多技巧的选择可能会有自己不同的喜好(它们可能有对比,但是这里列出来的都是可用的好技术)    4.一些技巧可能和uni

2016-05-09 10:00:23 815

转载 简单的有限状态机设计---下

上篇给大家介绍了一个自定义的简单的使用switch语句实现的有限状态机,这次给大家介绍下一个简单的FSM框架,使用简单的FSM框架设计,可以避免我们使用switch实现的代码冗余,我们可以做到一个状态一个类,高效直观的区分开来。这个框架可以在unitycommunity.com找到 ,地址是http://wiki.unity3d.com/index.php?title=Finite_State

2016-05-09 09:57:06 1010

转载 简单的有限状态机设计---上

大家好,这次给大家分享下最近学习到的有限状态机的简单制作,我们先介绍下什么是有限状态机。   有限状态机(Finite State Machine) FSM 就是由一组状态组成,状态机会根据状态 、情况改变当下的状态。比如我们要设计一个怪物的AI,首先这个怪物有好几组状态: 空闲状态 Idle、攻击状态Attack、巡逻状态、死亡状态。当然我们还可以加入更多状态,再根据逻辑中的实现,让

2016-05-09 09:53:13 592

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除