2023大数据技术应用的五个主要场景总结

本文总结了大数据技术的五大应用场景,包括离线处理、实时流处理、交互查询、实时检索和融合数仓。离线处理采用MR或Spark,交互查询依赖高性能SQL引擎如SparkSQL和CarbonData,实时流处理常使用SparkStreaming和Flink,实时检索则结合Hbase和Elasticsearch,融合数仓以MPPDB支持离线和在线查询。
摘要由CSDN通过智能技术生成

大数据技术应用的几个主要场景:离线处理、实时流处理、交互查询、实时检索和融合数据仓库

离线数据处理和分析:

一、离线处理场景:通常是指对海量数据进行分析和处理,形成结果数据,供下一步数据应用使用。离线处理对处理时间要求不高,但是所处理数据量较大,占用计算存储资源较多,通常通过MR或者Spark作业或者SQL作业来实现;

二、离线数据处理场景的特点:处理时间要求不高、处理数据量巨大、处理数据格式多样、多个作业调度复杂、占用计算存储资源多、支持SQL类作业和自定义作业、容易产生资源抢占等;

三、离线场景的大数据组件架构:

1、实时数据采集,用于实时采集流式数据:

a、Flume:用于Socket流或者日志文件等的数据采集;

b、第三方采集工具:第三方采集工具采集后,送入KAFKA +Spark Streaming进行数据预处理和实时加载

c、ETL工具:第三方ETL工具进行数据采集、加载、处理等;

2、批量采集系统:用于采集批量数据,主要的组件有Flume、Sqoop、第三方采集工具(数据采集、加载、处理的工具);

3、离线批处理引擎:Mapreduce+Hive或者Spark+SparkSQLMapreduce和Spark来处理非SQL类作业,Hive和SparkSQL处理SQL类作业;推荐使用Spark+SparkSQL的组合,因为性能和兼容性更好;有存量应用时,可以使用MRS+Hive组合;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖胖的洋葱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值