GPyTorch中的超参数

0、前言

本篇基于官方文档的教程

本篇的目的是解释GPyTorch中超参是如何起作用的、怎样调整,约束与先验有什么选项,另外还会介绍与别的packages的区别。

import math

import numpy as np
import torch
from matplotlib import pyplot as plt
from gpytorch import kernels, means, models, mlls, settings, likelihoods, constraints,prior
from gpytorch import distributions as distr

1、定义模型

模型与基础教程中的相同。我们用它来演示针对超参数的一些操作。

# Training data is 100 points in [0,1] inclusive regularly spaced
train_x = torch.linspace(0, 1, 100)
# True function is sin(2*pi*x) with Gaussian noise
train_y = torch.sin(train_x * (2 * math.pi)) + torch.randn(train_x.size()) * math.sqrt(0.04)


# We will use the simplest form of GP model, exact inference
class ExactGPModel(models.ExactGP):
    def __init__(self, train_x, train_y, likelihood):
        super(ExactGPModel, self).__init__(train_x, train_y, likelihood)
        self.mean_module = means.ConstantMean()
        self.covar_module = kernels.ScaleKernel(kernels.RBFKernel())

    def forward(self, x):
        mean_x = self.mean_module(x)
        covar_x = self.covar_module(x)
        return distr.MultivariateNormal(mean_x, covar_x)


# initialize likelihood and model
likelihood = likelihoods.GaussianLikelihood()
model = ExactGPModel(train_x, train_y, likelihood)

2、查看模型参数

让我们来看看模型的参数。这儿提到的参数都是指torch.nn.Parameter,在自动求导时会填充其梯度。有两种方法查看,其中一种是model.state_dict(),我们这儿用它保存模型。

下面的内容中我们用到的是另一种方法:遍历model.named_parameters()生成器

for param_name, param in model.named_parameters():
    print(f'Parameter name: {param_name:42} value = {param.item()}')

在这里插入图片描述

2.1、原始 vs 实际参数

这要特别注意的是模型实际要学习的参数是诸如raw_noise, raw_outputscale, raw_lengthscale的参数。原因是它们必须是正的。这就引入参数的下一个话题了:约束,以及原始实际参数的区别。

为了实现强制为正和其他约束条件,GPyTorch通过某种constraint把原始参数raw parameters转变成实际值actual values。现在来看看原始outputscale、其约束与最终的值吧。

raw_outputscale = model.covar_module.raw_outputscale
print('raw_outputscale, ', raw_outputscale)

# Three ways of accessing the raw outputscale constraint
print('\nraw_outputscale_constraint1', model.covar_module.raw_outputscale_constraint)

print('\n\n**Printing all model constraints...**\n')
for constraint_name, constraint in model.named_constraints():
    print(f'Constraint name: {constraint_name:55} constraint = {constraint}')

print('\n**Getting raw outputscale constraint from model...**')
print(model.constraint_for_parameter_name("covar_module.raw_outputscale"))


print('\n**Getting raw outputscale constraint from model.covar_module...**')
print(model.covar_module.constraint_for_parameter_name("raw_outputscale"))

在这里插入图片描述
(译者注:lengthscale是用来控制频率(input轴的波动)的,outputscale我猜是用来控制振幅(output轴的波动)的,可参见此篇知乎文章。)

2.2、constraints是如何起作用的

constraints定义了transforminverse transform方法来把原始参数转化为真实参数。对于positive约束,我们期望参数总是大于零的。

print('Transformed outputscale', constraint.transform(raw_outputscale))
print(constraint.inverse_transform(constraint.transform(raw_outputscale)))
print(torch.equal(constraint.inverse_transform(constraint.transform(raw_outputscale)), raw_outputscale))
print('Transform a bunch of negative tensors: ', constraint.transform(torch.tensor([-1., -2., -3.])))

在这里插入图片描述
(译者注:之前我一直以为 P o s i t i v e ( ⋅ ) Positive(\cdot) Positive()是绝对值函数,但看到这里才发现是 s o f t p l u s softplus softplus函数,记为 ζ ( x ) \zeta(x) ζ(x) ζ ( x ) = log ⁡ ( 1 + e x ) \zeta(x)=\log(1+e^x) ζ(x)=log(1+ex)。该函数的特性是恒大于零,单调递增 lim ⁡ x → ∞ ζ ( x ) = x \lim\limits_{x\rightarrow\infty}\zeta(x)=x xlimζ(x)=x, lim ⁡ x → 0 ζ ( x ) = 0 \quad\lim\limits_{x\rightarrow0}\zeta(x)=0 x0limζ(x)=0

2.3、便捷地获取/设定转化后的参数值

处理原始参数很不方便(我们容易知道0.01的噪声方差是什么意思,但很难知道-2.791的raw_noise表示的意义),实际上所有定义原始参数的内置GPyTorch模组也同时定义了直接处理转化后的参数值的获取器getters和赋值器setters。

下面我们对比获取/设定参数值的繁琐方法与便捷方法。

# Recreate model to reset outputscale
model = ExactGPModel(train_x, train_y, likelihood)

# Inconvenient way of getting true outputscale
raw_outputscale = model.covar_module.raw_outputscale
constraint = model.covar_module.raw_outputscale_constraint
outputscale = constraint.transform(raw_outputscale)
print(f'Actual outputscale: {outputscale.item()}')

# Inconvenient way of setting true outputscale
model.covar_module.raw_outputscale.data.fill_(constraint.inverse_transform(torch.tensor(2.)))
raw_outputscale = model.covar_module.raw_outputscale
outputscale = constraint.transform(raw_outputscale)
print(f'Actual outputscale after setting: {outputscale.item()}')

在这里插入图片描述
哎呀,这也太麻烦了叭~所幸GPyTorch为我们提供了更好的方式:

# Recreate model to reset outputscale
model = ExactGPModel(train_x, train_y, likelihood)

# Convenient way of getting true outputscale
print(f'Actual outputscale: {model.covar_module.outputscale}')

# Convenient way of setting true outputscale
model.covar_module.outputscale = 2.
print(f'Actual outputscale after setting: {model.covar_module.outputscale}')

在这里插入图片描述

3、改变参数约束

如果我们查看模型的实际噪声,就会发现GPyTorch为其设定了1e-4的下限。

print(f'Actual noise value: {likelihood.noise}')
print(f'Noise constraint: {likelihood.noise_covar.raw_noise_constraint}')

在这里插入图片描述
我们可以动态修改噪声约束,抑或是在创建likelihood对象时进行设定。

print(f'Actual noise value: {likelihood.noise}')
print(f'Noise constraint: {likelihood.noise_covar.raw_noise_constraint}')

likelihood = likelihoods.GaussianLikelihood(noise_constraint=constraints.GreaterThan(1e-3))
print(f'Noise constraint: {likelihood.noise_covar.raw_noise_constraint}')

# Changing the constraint after the module has been created
likelihood.noise_covar.register_constraint("raw_noise", constraints.Positive())
print(f'Noise constraint: {likelihood.noise_covar.raw_noise_constraint}')

在这里插入图片描述
(译者注:除了PositiveGreaterThan,constraints还有LessThanInterval约束)

4、先验

GPyTorch中,先验prior储存在模型中,作用于任意参数的任意函数。如同约束,它们既可以在创建模型时设定,也可在创建之后动态修改。

# Registers a prior on the sqrt of the noise parameter
# (e.g., a prior for the noise standard deviation instead of variance)
likelihood.noise_covar.register_prior(
    "noise_std_prior",
    gpytorch.priors.NormalPrior(0, 1),
    lambda module: module.noise.sqrt()
)

# Create a GaussianLikelihood with a normal prior for the noise
likelihood = gpytorch.likelihoods.GaussianLikelihood(
    noise_constraint=gpytorch.constraints.GreaterThan(1e-3),
    noise_prior=gpytorch.priors.NormalPrior(0, 1)
)

5、融会贯通

下面我们对超参数人为设定一些先验和更严格的约束,来完善我们的模型创建。

class FancyGPWithPriors(models.ExactGP):
    def __init__(self, train_x, train_y, likelihood):
        super(FancyGPWithPriors, self).__init__(train_x, train_y, likelihood)
        self.mean_module = means.ConstantMean()

        lengthscale_prior = priors.GammaPrior(3.0, 6.0)
        outputscale_prior = priors.GammaPrior(2.0, 0.15)

        self.covar_module = kernels.ScaleKernel(
            kernels.RBFKernel(
                lengthscale_prior=lengthscale_prior,
            ),
            outputscale_prior=outputscale_prior
        )

        # Initialize lengthscale and outputscale to mean of priors
        self.covar_module.base_kernel.lengthscale = lengthscale_prior.mean
        self.covar_module.outputscale = outputscale_prior.mean

    def forward(self, x):
        mean_x = self.mean_module(x)
        covar_x = self.covar_module(x)
        return distr.MultivariateNormal(mean_x, covar_x)


likelihood = likelihoods.GaussianLikelihood(
    noise_constraint=constraints.GreaterThan(1e-2),
)

model = FancyGPWithPriors(train_x, train_y, likelihood)

6、一次性初始化

方便起见,GPyTorch也定义了initialize方法,使我们用字典来更新模块的参数。

hypers = {
    'likelihood.noise_covar.noise': torch.tensor(1.),
    'covar_module.base_kernel.lengthscale': torch.tensor(0.5),
    'covar_module.outputscale': torch.tensor(2.),
}

model.initialize(**hypers)
print(
    model.likelihood.noise_covar.noise.item(),
    model.covar_module.base_kernel.lengthscale.item(),
    model.covar_module.outputscale.item()
)

在这里插入图片描述

PyTorch使用贝叶斯优化进行超参数优化可以使用以下步骤: 1. 安装依赖 使用PyTorch进行贝叶斯优化需要安装以下依赖: ``` pip install botorch gpytorch ``` 2. 定义搜索空间 定义超参数的搜索空间,可以使用`BoTorch`的`Bounds`和`Categorical`类来表示连续和离散参数。例如: ```python from botorch import Bounds, Categorical from botorch import qNEI from botorch.optim import optimize_acqf bounds = Bounds(torch.tensor([1.0, 0.01]), torch.tensor([100.0, 0.1])) search_space = { "learning_rate": bounds[:, 0], "weight_decay": bounds[:, 1], "optimizer": Categorical([0, 1, 2]), } ``` 这个搜索空间包含两个连续参数(学习率和权重衰减)和一个离散参数(优化器)。 3. 定义代价函数 定义需要优化的代价函数,例如: ```python def train_and_evaluate(config): # 使用config的参数进行模型训练和评估 return score ``` 4. 定义贝叶斯优化循环 使用`BoTorch`的`BayesianOptimizer`类进行贝叶斯优化循环。例如: ```python from botorch.optim import optimize_acqf from botorch.acquisition import UpperConfidenceBound num_restarts = 10 raw_samples = 512 initial_observations = 8 acq_function = UpperConfidenceBound(model, beta=0.1) optimizer = BayesianOptimizer( search_space=search_space, objective=train_and_evaluate, acquisition_function=acq_function, num_initial_points=initial_observations, ) for iteration in range(num_iterations): # 使用贝叶斯优化进行超参数搜索 batch = optimizer.optimize(num_restarts=num_restarts, raw_samples=raw_samples) # 更新代价函数的历史数据 optimizer.add_new_data(batch) ``` 这个循环,我们使用`UpperConfidenceBound`作为采集函数,并使用`BayesianOptimizer`进行贝叶斯优化。 5. 获取最佳超参数配置 循环结束后,我们可以使用`BayesianOptimizer`的`get_best_point()`方法获取最佳超参数配置。例如: ```python best_point = optimizer.get_best_point() ``` 这个方法返回一个字典,包含了最佳超参数配置的键值对。 以上就是使用PyTorch进行贝叶斯超参数优化的基本步骤。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值