文档
基本使用
用样本拟合函数 f ( x ) = a e − b x + c f(x) = ae^{-bx}+c f(x)=ae−bx+c
# 将图片内嵌在交互窗口,而不是弹出一个图片窗口
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
# 定义目标函数
def func(x, a, b, c):
return a * np.exp(-b * x) + c
# 这部分生成样本点,对函数值加上高斯噪声作为样本点
# [0, 4]共50个点
xdata = np.linspace(0, 4, 50)
# a=2.5, b=1.3, c=0.5
y = func(xdata, 2.5, 1.3, 0.5)
np.random.seed(10086)
err_stdev = 0.2
# 生成均值为0,标准差为err_stdev为0.2的高斯噪声
y_noise = err_stdev * np.random.normal(size=xdata.size)
ydata = y + y_noise
plt.figure('拟合图')
plt.plot(xdata, ydata, 'b-', label='data')
# 利用curve_fit作简单的拟合,popt为拟合得到的参数,pcov是参数的协方差矩阵
popt, pcov = curve_fit(func, xdata, ydata)
plt.plot(xdata, func(xdata, *popt), 'r-