利用scipy.optimize.curve_fit对函数进行拟合

本文介绍了如何利用scipy.optimize.curve_fit进行函数拟合,通过实例展示了普通拟合和参数范围受限拟合的效果,并计算了SSE、MSE、RMSE和决定系数等拟合指标。在考虑样本噪声和参数初始值选择的情况下,讨论了如何提高拟合质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文档

基本使用

用样本拟合函数 f ( x ) = a e − b x + c f(x) = ae^{-bx}+c f(x)=aebx+c

# 将图片内嵌在交互窗口,而不是弹出一个图片窗口
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

# 定义目标函数
def func(x, a, b, c):
    return a * np.exp(-b * x) + c

# 这部分生成样本点,对函数值加上高斯噪声作为样本点
# [0, 4]共50个点
xdata = np.linspace(0, 4, 50)
# a=2.5, b=1.3, c=0.5
y = func(xdata, 2.5, 1.3, 0.5)
np.random.seed(10086)
err_stdev = 0.2
# 生成均值为0,标准差为err_stdev为0.2的高斯噪声
y_noise = err_stdev * np.random.normal(size=xdata.size)
ydata = y + y_noise
plt.figure('拟合图')
plt.plot(xdata, ydata, 'b-', label='data')


# 利用curve_fit作简单的拟合,popt为拟合得到的参数,pcov是参数的协方差矩阵
popt, pcov = curve_fit(func, xdata, ydata)
plt.plot(xdata, func(xdata, *popt), 'r-
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值