
知识图谱、web数据挖掘及NLP
文章平均质量分 97
该专栏200篇文章主要讲述知识图谱、Web数据挖掘、机器学习、文本挖掘和自然语言处理基础知识。一方面分享基础原理知识,另一方面结合Python编写案例代码。后续复现相关论文,代码会开源,希望文章对您有所帮助,感恩遇见,不负青春!
优惠券已抵扣
余额抵扣
还需支付
¥9.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
Eastmount
北理本硕,武大博士。欢迎加入“网络攻防和AI安全之家”和“数智人文与文本挖掘”知识星球!自幼受贵州大山的熏陶,养成了诚实质朴的性格。经过寒窗苦读,考入BIT,为完成自己的教师梦,放弃IT、航天等工作,成为贵州高校的一名教师,并想把自己所学所感真心传授给自己的学生,帮助更多陌生人。已发表论文30余篇,撰写专著8部,主持课题6项,感恩遇到的每一位读者,且看且珍惜。
贵州纵美路迢迢,为负劳心此一遭。收得破书三四本,也堪将去教尔曹。娜美人生,醉美生活。他和她经历风雨,慢慢变老。
展开
-
[数智人文实战] 03.舆情分析之基于SnowNLP的公共事件情感分析
《数智人文实战》专栏将以实战为主,分享数智人文相关的案例100个,旨在帮助初学者和探索数智人文发展。前文分享了中文分词处理及文本聚类、LDA主题模型分析。这篇文章将抓取微博话题及评论信息,采用SnowNLP进行简单的情感分析及文本挖掘,包括随时间的情感分布。希望这篇基础性文章对您有所帮助,也非常感谢参考文献中老师的分享!原创 2024-06-09 22:16:06 · 956 阅读 · 0 评论 -
[数智人文实战] 02.舆情分析之词云可视化、文本聚类和LDA主题模型文本挖掘
《数智人文实战》专栏将以实战为主,分享数智人文相关的案例100个,旨在帮助初学者和探索数智人文发展。前文分享了可视化分析软件CiteSpace基础知识。这篇文章将以疫情舆情数据为语料(包含新闻数据采集),深入开展文本挖掘研究,包括中文分词处理及文本聚类、LDA主题模型分析。希望这篇可视化分析文章对您有所帮助,也非常感谢参考文献中老师的分享,一起加油!原创 2024-05-27 20:45:37 · 788 阅读 · 0 评论 -
[数智人文实战] 01.红楼梦主题演化分析——文献可视化分析软件CiteSpace入门
《数智人文实战》专栏将以实战为主,分享数智人文相关的案例100个,旨在帮助初学者和探索数智人文发展。本文主要介绍文献可视化分析软件CiteSpace基础知识,以中国知网《红楼梦》文献为例,开展主题挖掘、关键词聚类及主题演化分析。基础文章,希望对您有所帮助。原创 2024-05-27 12:25:31 · 624 阅读 · 0 评论 -
[Pyhon大数据分析] 五.人民网新闻话题抓取及Gephi构建主题知识图谱
前文分享了采用SnowNLP对微博话题进行简单的情感分析及文本挖掘。这篇文章将讲解Python抓取人民网新闻,并利用Gephi构建疫情主题知识图谱,发现各主题关键词的关联。希望这篇基础性文章对您有所帮助,也非常感谢参考文献中老师的分享!如果您有想学习的知识或建议,可以给作者留言~原创 2020-04-13 16:43:55 · 28821 阅读 · 55 评论 -
[Pyhon疫情大数据分析] 四.微博话题抓取及新冠肺炎疫情文本挖掘和情感分析
Python大数据分析系列博客,包括网络爬虫、可视化分析、GIS地图显示、情感分析、舆情分析、主题挖掘、威胁情报溯源、知识图谱、预测预警及AI和NLP应用等。前文分享了疫情相关新闻数据爬取,并进行中文分词处理及文本聚类、LDA主题模型分析。这篇文章将抓取微博话题及评论信息,采用SnowNLP进行简单的情感分析及文本挖掘,包括随时间的情感分布。希望这篇基础性文章对您有所帮助原创 2020-03-21 14:40:03 · 70975 阅读 · 129 评论 -
[Pyhon疫情大数据分析] 三.新闻信息抓取及词云可视化、文本聚类和LDA主题模型文本挖掘
Python大数据分析系列博客包括网络爬虫、可视化分析、GIS地图显示、情感分析、舆情分析、主题挖掘、威胁情报溯源、知识图谱、预测预警及AI和NLP应用等。这篇文章将爬取疫情相关的新闻数据,接着进行中文分词处理及文本聚类、LDA主题模型分析。希望这篇可视化分析文章对您有所帮助,一起加油,战胜疫情!原创 2020-03-07 12:08:47 · 33946 阅读 · 83 评论 -
[Pyhon大数据分析] 二.PyEcharts绘制全国各地区、某省各城市地图及可视化分析
本系列文章是Python大数据分析系列博客,包括网络爬虫、可视化分析、GIS地图显示、情感分析、舆情分析、主题挖掘、威胁情报溯源、知识图谱、预测预警及AI和NLP应用等。前文分享了数据抓取,并将数据存储至本地,最后调用Maplotlib和Seaborn绘制。本文将结合PyEcharts绘制地图、折线图、柱状图,希望这篇可视化分析文章对您有所帮助,也非常感谢参考文献中老师的分享,一起加油!如果您有想学习的知识或建议,可以给作者留言~原创 2020-05-21 15:35:11 · 28061 阅读 · 36 评论 -
[Pyhon疫情大数据分析] 一.腾讯实时数据爬取、Matplotlib和Seaborn可视化分析全国各地区、某省各城市、新增趋势
思来想去,虽然很忙,但还是挤时间针对这次肺炎疫情写个Python大数据分析系列博客,包括网络爬虫、可视化分析、GIS地图显示、情感分析、舆情分析、主题挖掘、威胁情报溯源、知识图谱、预测预警及AI和NLP应用等。第一篇文章将分享腾讯疫情实时数据抓取,获取全国各地和贵州省各地区的实时数据,并将数据存储至本地,最后调用Maplotlib和Seaborn绘制中国各地区、贵州省各城市、新增人数的图形。希望这篇可视化分析文章对您有所帮助!原创 2020-02-17 20:25:08 · 44286 阅读 · 51 评论 -
[知识图谱实战篇] 八.HTML+D3绘制时间轴线及显示实体
前面通过七篇文章基本构建了电影知识图谱,并且能显示选中节点相关联的边及属性,本文主要采用HTML和D3绘制时间轴线及显示实体名称。为了加深自己对知识图谱构建的认识,为后续创建贵州旅游知识图谱打下基础,作者深入学习了张宏伦老师的网易云课程,并结合自己的理解和技术分享了该系列专栏,从数据采集、数据展示、数据分析到知识图谱构建,文章后续还会讲解中文数据的实体识别、关系抽取、知识计算等。原创 2019-02-18 17:04:21 · 9312 阅读 · 5 评论 -
[知识图谱实战篇] 七.HTML+D3实现关系图谱搜索功能
前面作者讲解了很多知识图谱原理知识,包括知识图谱相关技术、Neo4j绘制关系图谱等,但仍缺少一个系统全面的实例。为了加深自己对知识图谱构建的认识,为后续创建贵州旅游知识图谱打下基础,作者深入学习了张宏伦老师的网易云课程,并结合自己的理解和技术分享了该系列专栏,从数据采集、数据展示、数据分析到知识图谱构建,文章后续还会讲解中文数据的实体识别、关系抽取、知识计算等。前面通过六篇文章基本构建了电影知识图谱,并且能显示选中节点相关联的边及属性。原创 2019-02-14 15:45:04 · 12287 阅读 · 10 评论 -
[知识图谱实战篇] 六.HTML+D3实现点击节点显示相关属性及属性值
前文介绍了Python3抓取电影实体知识,Seaborn可视化展示电影信息,D3可视化布局,关系图谱基本构建。本篇文章将实现点击节点显示其相关的属性及属性值,通常在知识图谱中称之为消息盒(InfoBox)展示。该专栏结合自己的理解和技术分享了该系列专栏,从数据采集、数据展示、数据分析到知识图谱构建,文章后续还会讲解中文数据的实体识别、关系抽取、知识计算等。原创 2019-02-13 18:25:57 · 11772 阅读 · 1 评论 -
[知识图谱实战篇] 五.HTML+D3添加鼠标响应事件显示相关节点及边
前文介绍了Python3抓取电影实体知识,Seaborn可视化展示电影信息,D3可视化布局,关系图谱基本构建。本篇文章将实现如下图所示的功能,主要包括:1.建立两种模式,点击“节点”显示所有圆,点击“文字”显示实体名称2.添加鼠标响应事件,选中某一个节点显示其相关的节点及边3.鼠标放开恢复所有节点原创 2019-02-12 22:30:00 · 8914 阅读 · 2 评论 -
[知识图谱实战篇] 四.HTML+D3+CSS绘制关系图谱
前面作者讲解了很多知识图谱原理知识,包括知识图谱相关技术、Neo4j绘制关系图谱等,但仍缺少一个系统全面的实例。为了加深自己对知识图谱构建的认识,为后续创建贵州旅游知识图谱打下基础,作者深入学习了张宏伦老师的网易云课程,并结合自己的理解和技术分享了该系列专栏。前文介绍了Python3抓取电影实体知识,Seaborn可视化展示电影信息,D3可视化布局。本文着重构建知识图谱,通过D3显示已获取的节点和关系图谱。原创 2019-02-12 17:40:52 · 18587 阅读 · 6 评论 -
[知识图谱实战篇] 三.Python提取JSON数据、HTML+D3构建基本可视化布局
前文介绍了Python3抓取电影实体知识,Seaborn可视化展示电影信息,本文着重构建知识图谱的布局,包括三部分内容:一是Python提取节点和关联两类数据,二是HTML和CSS进行网页布局,三是调用D3显示提取的JSON数据。这是一系列基础性文章,希望对您有所帮助 ,尤其是对知识图谱感兴趣和编程刚入门的同学。同时也因为最近准备博士考试,做题做吐了,写点新东西调节下心情,与君共勉,一起加油。原创 2019-02-03 01:26:08 · 15322 阅读 · 8 评论 -
[知识图谱实战篇] 二.Json+Seaborn可视化展示电影实体
前文介绍了Python3抓取电影实体知识,这篇文章主要讲解Python+Seaborn可视化展示电影信息,它首先需要通过文件读取获取JSON所需数据,再绘制相关图形。这是一系列基础性文章,希望对您有所帮助 ,尤其是对知识图谱感兴趣和编程刚入门的同学。同时也因为最近准备博士考试,做题做吐了,写点新东西调节下心情,与君共勉,一起加油。为了加深自己对知识图谱构建的认识,为后续创建贵州旅游知识图谱打下基础,作者深入学习了张宏伦老师的网易云课程,写下该专栏。原创 2019-02-01 13:20:40 · 10655 阅读 · 5 评论 -
[知识图谱实战篇] 一.数据抓取之Python3抓取JSON格式的电影实体
前面作者讲解了很多知识图谱相关的原理知识,包括知识图谱相关技术、Neo4j绘制关系图谱等,但还是缺少一个系统全面的实例。为了加深自己对知识图谱构建的认识,为后续创建贵州旅游知识图谱打下基础,作者学习了张宏伦老师的网易云课程,强烈推荐大家去学习,并结合自己的理解和技术分享了该系列专栏,从数据采集、数据分析到知识图谱构建,文章后续会讲解中文数据的实体识别、关系抽原创 2019-01-31 14:33:53 · 13854 阅读 · 13 评论 -
[知识图谱构建] 二.《Neo4j基础入门》基础学习之创建图数据库节点及关系
该系列文章主要讲解知识图谱及Neo4j图数据库的用法,本篇文章是作者学习《Neo4j基础入门》书籍的在线笔记,主要讲解Neo4j的基础知识及基本语法,希望大家喜欢。原创 2018-12-19 18:01:17 · 11706 阅读 · 6 评论 -
[知识图谱构建] 一.Neo4j图数据库安装初识及药材供应图谱实例
2012年5月,谷歌公司的知识图谱(Knowledge Graph)产品被正式提出,其旨在将人、地点、物等信息作为实体,将实体间的联系作为关系,并将实体和关系以图的形式进行存储。作为语义网的最新产物,知识图谱这种新型的搜索引擎改变了传统的文本搜索结果,而随后国内公司也开发出了相应产品,例如百度公司的“知心”和搜狗公司的“知立方”等。知识图谱本质上属于一种语义网。知识图谱中的每一条数据或事实一般会采用 <实体,属性,属性值> <实体, 关系,原创 2018-10-22 22:03:03 · 15055 阅读 · 12 评论 -
[Python知识图谱] 四.Python和Gephi实现中国知网合作关系知识图谱
该系列文章主要讲解知识图谱或关系图谱的构建方法,前文介绍了Neo4j图数据库和Jieba、PyLTP的基本用法。本篇文章主要采用Python和Gephi构建中国知网某个领域的作者合作关系和主题词共现的知识图谱,重点阐述了一种可操作的关系图谱构建方法,可用于论文发表、课程或企业可视化展示等。其基本步骤如下:1.在中国知网搜索“清水江”关键词,并导出论文Excel格式。2.使用Python处理文本,获取作者合作的共现矩阵及三元组。3.Gephi导入CSV节点及边文件,并构建关系图谱。原创 2019-09-02 16:47:35 · 28087 阅读 · 33 评论 -
[Python知识图谱] 三.Jieba工具中文分词、添加自定义词典及词性标注详解
本系列文章主要结合Python语言实现知识图谱构建相关工程,具有一定创新性和实用性,非常希望各位博友交流讨论,相互促进成长。前面两篇文章详细讲解了哈工大Pyltp工具,包括中文分词、词性标注、实体识别、依存句法分析和语义角色标注等。但是其中文分词效果不是很理想,如“贵州财经大学”总是切分成“贵州”、“财经”和“大学”,这是因为词典中这些词的权重较高。这篇文章主要介绍最经典的自然语言处理工具之一——Jieba,包括中文分词、添加自定义词典及词性标注等内容。原创 2019-07-28 16:59:38 · 22705 阅读 · 23 评论 -
[Python知识图谱] 二.哈工大pyltp词性标注、命名实体识别、依存句法分析和语义角色标注
本系列文章主要结合Python语言实现知识图谱构建相关工程,具有一定创新性和实用性,非常希望各位博友交流讨论,相互促进成长。第一篇文章主要介绍哈工大pytltp工具,包括安装过程、中文分词等;第二篇文章主要讲解词性标注、实体识别、依存句法分析和语义角色标注。希望基础性文章对你有所帮助,一起加油~原创 2019-06-17 10:26:07 · 14462 阅读 · 12 评论 -
[Python知识图谱] 一.哈工大pyltp安装及中文分句、中文分词、导入词典基本用法
本系列文章主要结合Python语言实现知识图谱构建相关工程,具有一定创新性和实用性,非常希望各位博友交流讨论,相互促进成长。第一篇文章主要介绍哈工大pytltp工具,包括安装过程、中文分词、词性标注和实体识别等。基础性文章,希望对您有所帮助。原创 2019-06-05 00:26:57 · 14487 阅读 · 28 评论 -
[关系图谱] 二.Gephi导入共线矩阵构建作者关系图谱
本文主要讲解Gephi绘制作者间的关系图谱,该软件可以广泛应用于社交网络、知识图谱分析,推荐读者使用。这是非常基础的一篇文章,重点讲解Gephi使用方法,希望对大家有所帮助。原创 2018-12-17 15:48:26 · 15208 阅读 · 9 评论 -
[关系图谱] 一.Gephi通过共现矩阵构建知网作者关系图谱
作者最近研究人物关系图谱,准备发表相关的文章,原本是用Python Networkx库绘制,但效果不太理想;故改为Gephi软件,发现其非常好看,特分享几篇文章供大家交流学习,希望对您有所帮助,尤其是引文分析、社交网络、主题分布等方向的同学。后续的文章将尽可能的使用Markdown语法撰写了。 参考文章:【python数据挖掘课程】十七.社交网络Networkx库分析人物关系(初识篇) ...原创 2018-08-16 20:17:11 · 29906 阅读 · 19 评论 -
[Python舆情分析] 二.时间间隔分布研究及幂律分布图绘制
本文主要是作者学习舆情分析、情感分析、人类行为动力学分析的在线笔记,主要包括两方面内容,一是幂律特性,二是讲解时间间隔分布,三是Python绘制基于时间间隔分布的幂律特性图,四提供了另一种方法。基础性文章,希望对您有所帮助。原创 2019-01-24 19:19:46 · 9076 阅读 · 1 评论 -
[Python舆情分析] 一.舆情事件的幂律特性分析及时间间隔分布图绘制
本文主要是作者学习舆情分析、情感分析、人类行为动力学分析的在线笔记,主要包括两方面内容,一是结合参考文献介绍人类行为动力学分析,二是讲解Python绘制幂律特性及时间间隔分布图的方法。基础性文章,希望对您有所帮助。原创 2019-01-22 14:19:35 · 13928 阅读 · 2 评论 -
[python数据分析] 简述幂率定律及绘制Power-law函数
这篇文章主要是最近研究人类行为应用的内容,主要简单叙述下复杂网络的幂率分布以及绘制Power-law函数一些知识,同时是一篇在线笔记。希望对您有所帮助,如果文章中存在不足或错误的地方,还请海涵~ 1.幂率分布 2.Zipf定律 3.Scale free 4.Python绘制幂率分布 这篇文章基础知识转载了别人的内容,这里强烈推荐大家阅读原文。此篇文章主要是讲述代码部分,定律我也还在学习中,和大家共勉。原创 2017-03-23 23:57:57 · 20042 阅读 · 1 评论 -
[python+nltk] 自然语言处理简单介绍和NLTK坏境配置及入门知识(一)
本文主要是总结最近学习的论文、书籍相关知识,主要是Natural Language Pracessing(自然语言处理,简称NLP)和Python挖掘维基百科Infobox等内容的知识。 此篇文章主要参考书籍《Natural Language Processing with Python》Python自然语言处理,希望对大家有所帮助。书籍下载地址:所谓“自然语言”,是指人们日常交流使用的语言,如英语、印地语随着不断演化,很难用明确的规则来刻画。 从广义上,“自然语言处理”(原创 2015-04-16 19:49:12 · 12648 阅读 · 5 评论 -
[python] 安装numpy+scipy+matlotlib+scikit-learn及问题解决
这篇文章主要讲述Python如何安装Numpy、Scipy、Matlotlib、Scikit-learn等库的过程及遇到的问题解决方法。最近安装这个真是一把泪啊,各种不兼容问题和报错,希望文章对你有所帮助吧!你可能遇到的问题包括: ImportError: No module named sklearn 未安装sklearn包 ImportError: DLL load...原创 2015-12-17 22:22:16 · 22347 阅读 · 14 评论 -
【python数据挖掘课程】二十九.数据预处理之字符型转换数值型、标准化、归一化处理
这是《Python数据挖掘课程》系列文章,前面很多文章都讲解了数据挖掘、机器学习,这篇文章主要讲解数据分析预处理中字符特征转换为数值特征、数据标准化、数据归一化,这都是非常基础的工作。最后通过KNN实现KDD CUP99数据集的分类。文章比较基础,希望对你有所帮助,提供些思路,也是自己教学的内容。推荐大家购买作者新书《Python网络数据爬取及分析从入门到精通(分析篇)》,如果文章中存在错误或不足之处,还请海涵。原创 2019-11-23 14:28:26 · 9056 阅读 · 8 评论 -
【python数据挖掘课程】二十八.基于LDA和pyLDAvis的主题挖掘及可视化分析
这是《Python数据挖掘课程》系列文章,前面很多文章都讲解了数据挖掘、机器学习,这篇文章主要讲解LDA和pyLDAvis算法,同时讲解如何读取CSV文本内容进行主题挖掘及可视化展示。文章比较基础,希望对你有所帮助,提供些思路,也是自己教学的内容。推荐大家购买作者新书《Python网络数据爬取及分析从入门到精通(分析篇)》,如果文章中存在错误或不足之处,还请海涵。目录:一.显示结果及安装二.LDA主题挖掘三.pyLDAvis可视化分析四.小结原创 2019-06-12 14:31:07 · 17855 阅读 · 29 评论 -
【python数据挖掘课程】二十七.基于SVM分类器的红酒数据分析
这是《Python数据挖掘课程》系列文章,前面很多文章都讲解了分类、聚类算法,这篇文章主要讲解SVM分类算法,同时讲解如何读取TXT文件数据并进行数据分析及评价的过程。文章比较基础,希望对你有所帮助,提供些思路,也是自己教学的内容。推荐大家购买作者新书《Python网络数据爬取及分析从入门到精通(分析篇)》,如果文章中存在错误或不足之处,还请海涵。目录:一.SVM基础概念二.SVM基本使用方法三.TXT红酒数据集预处理四.SVM分析红酒数据五.代码优化原创 2019-01-16 19:26:48 · 17904 阅读 · 5 评论 -
【python数据挖掘课程】二十六.基于SnowNLP的豆瓣评论情感分析
这是《Python数据挖掘课程》系列文章,前面很多文章都讲解了分类、聚类算法,而这篇文章主要讲解如何调用SnowNLP库实现情感分析,处理的对象是豆瓣《肖申克救赎》的评论文本。文章比较基础,希望对你有所帮助,提供些思路,也是自己教学的内容。如果文章中存在错误或不足之处,还请海涵。同时,推荐大家阅读我以前的文章了解其他知识。原创 2018-12-21 11:21:48 · 33710 阅读 · 19 评论 -
【python数据挖掘课程】二十五.Matplotlib绘制带主题及聚类类标的散点图
这是《Python数据挖掘课程》系列文章,希望对您有所 帮助。当我们做聚类分析绘制散点图时,通常会遇到无法区分散点类标的情况,做主题分析时,可能会遇到无法将对应散点的名称(尤其中文名称)添加至图型中,为了解决这两个问题,本文提出了Matplotlib库的高级应用,主要是绘制带主题的散点图及聚类类标颜色进行区分,该方法被广泛应用于文本聚类和主题分析领域。本篇文章为基础性文章,希望对你有所帮助,提供...原创 2018-07-18 23:41:12 · 11761 阅读 · 3 评论 -
【python数据挖掘课程】二十四.KMeans文本聚类分析互动百科语料
这是《Python数据挖掘课程》系列文章,也是我上课内容及书籍中的一个案例。本文主要讲述文本聚类相关知识,包括中文分词、数据清洗、特征提取、TF-IDF、KMeans聚类等步骤。本篇文章为基础性文章,希望对你有所帮助,提供些思路,也是自己教学的内容。如果文章中存在错误或不足之处,还请海涵。同时,推荐大家阅读我以前的文章了解其他知识。前文参考:【Python数据挖掘课程】一.安装Pyth...原创 2018-07-06 10:19:58 · 11750 阅读 · 9 评论 -
【python数据挖掘课程】二十三.时间序列金融数据预测及Pandas库详解
这是《Python数据挖掘课程》系列文章,也是我上课内容及书籍中的一个案例。本文主要讲述时间序列算法原理,Pandas扩展包基本用法以及Python调用statsmodels库的时间序列算法。由于作者数学比较薄弱,自己也还在学习,所以原理推导部分本文只简单叙述,同时参考了《Python金融大数据分析 ·Yves Hilpisch》书籍。本篇文章为基础性文章,希望对你有所帮助,提供些思路,也是自己教原创 2018-05-09 23:12:26 · 14759 阅读 · 15 评论 -
【python数据挖掘课程】二十二.Basemap地图包安装入门及基础知识讲解
这是《Python数据挖掘课程》系列文章,也是我上课内容及书籍中的一个案例。本文主要讲述Matplotlib子包,负责地图绘制,即Basemap扩展包。在做数据挖掘或可视化分析时,常常需要将数据显示到地图上,比如城市人口、空气环境、GDP分布、资源销售、全球热图等。本文主要讲解安装入门以及官网介绍的基础知识,后面文章将结合实例深入讲解。内容包括: 1.Basemap安装过程 2.地图绘原创 2018-01-29 19:22:04 · 16332 阅读 · 1 评论 -
【python数据挖掘课程】二十一.朴素贝叶斯分类器详解及中文文本舆情分析
这是《Python数据挖掘课程》系列文章,也是我上课内容及书籍中的一个案例。本文主要讲述朴素贝叶斯分类算法并实现中文数据集的舆情分析案例,希望这篇文章对大家有所帮助,提供些思路。内容包括: 1.朴素贝叶斯数学原理知识 2.naive_bayes用法及简单案例 3.中文文本数据集预处理 4.朴素贝叶斯中文文本舆情分析本篇文章为基础性文章,希望对你有所帮助,如果文章中存在错误或原创 2018-01-24 14:04:41 · 15988 阅读 · 11 评论 -
【python数据挖掘课程】二十.KNN最近邻分类算法分析详解及平衡秤TXT数据集读取
这是《Python数据挖掘课程》系列文章,也是我这学期上课的部分内容及书籍的一个案例。本文主要讲述KNN最近邻分类算法、简单实现分析平衡秤数据集,希望这篇文章对大家有所帮助,同时提供些思路。内容包括: 1.KNN算法基础原理知识 2.最近邻分类算法分析预测坐标类型 3.Pandas读取TXT数据集 4.KNN分析平衡秤数据集 5.算法优化本篇文章为基础性文章,希望对你有所帮助,如果文章中存在错误或不足支持,还请海涵~同时,推荐大家阅读我以前的文章了解基础知识。自己真原创 2017-12-08 00:15:43 · 13985 阅读 · 8 评论 -
【python数据挖掘课程】十九.鸢尾花数据集可视化、线性回归、决策树花样分析
这是《Python数据挖掘课程》系列文章,也是我这学期上课的部分内容。本文主要讲述鸢尾花数据集的各种分析,包括可视化分析、线性回归分析、决策树分析等,通常一个数据集是可以用于多种分析的,希望这篇文章对大家有所帮助,同时提供些思考。内容包括: 1.鸢尾花数据集可视化分析 2.线性回归分析鸢尾花花瓣长度和宽度的关系 3.决策树分析鸢尾花数据集 4.Kmeans聚类分析鸢尾花数据集本篇文章为基础性文章,希望对你有所帮助,如果文章中存在错误或不足支持,还请海涵~这也是自己书籍几章的原创 2017-12-02 00:39:33 · 31744 阅读 · 4 评论