离散时间复指数序列的周期性质

转载于:https://blog.csdn.net/reborn_lee/article/details/81105196

目录

序言

连续时间复指数信号

离散时间复指数序列的性质考察

考察离散时间复指数序列是否满足第一条性质

由研究第一条性质得到的规律

考察第二条性质

离散时间复指数序列的基波周期和基波频率

成谐波关系的周期离散时间复指数信号


 

序言

写这篇博文的目的有两个:

其一是为了下一篇博文:离散周期序列的傅里叶级数做准备,以及以后的信号处理学习打下基础。

其二就是单纯地去学习这一个重要的信号,它和连续时间复指数信号在数字信号处理的地位不可轻视!

连续时间复指数信号

采样对比的方式来研究这个信号,连续时间复指数信号 e j w 0 t e^{jw_{0}t} ejw0t具有以下两个性质:

1. w 0 w_{0} w0愈大,信号振荡的速率就愈高;

2. e j w 0 t e^{jw_{0}t} ejw0t对任何 w 0 w_{0} w0都是周期的。

下面也就这两个方面来考察离散时间复指数序列 e j w 0 n e^{jw_{0}n} ejw0n

离散时间复指数序列的性质考察

考察离散时间复指数序列是否满足第一条性质

研究频率为 w 0 + 2 k π , k = 0 , ± 1 , ± 2 , . . . w_{0}+2k\pi,k=0,\pm 1,\pm2,... w0+2kπ,k=0,±1,±2,...的离散时间复指数序列:
e j ( w 0 + 2 k π ) n = e j w 0 n e j 2 k π n = e j w 0 n e^{j(w_{0}+2k\pi)n}=e^{jw_{0}n}e^{j2k\pi n}=e^{jw_{0}n} ej(w0+2kπ)n=ejw0nej2kπn=ejw0n

可见,在离散时间情况下,具有频率为 w 0 w_{0} w0的复指数信号与 w 0 ± 2 π , w 0 ± 4 π , . . . w_{0}\pm2\pi, w_{0}\pm4\pi,... w0±2π,w0±4π,...这些频率的复指数信号是一样的。对比连续信号, t t t取值不一定为整数,所以对应
e j ( w 0 + 2 k π ) t = e j w 0 t e j 2 k π t ≠ e j w 0 t e^{j(w_0+2k\pi)t}=e^{jw_0t}e^{j2k\pi t}\ne e^{jw_0t} ej(w0+2kπ)t=ejw0tej2kπt=ejw0t

因此:

考虑这种离散时间复指数信号时,仅仅需要在某一个 2 π 2\pi 2π间隔内选择 w 0 w_0 w0即可。这也是为什么离散信号的频谱是周期的原因,就是因为当用频域中用 w w w作单位时,其对应的幅值函数是周期函数,进而推出时域与频域只是自变量是 n n n还是 w w w( w = k w 0 w=kw_0 w=kw0)。

由研究第一条性质得到的规律

从上面的式子
e j ( w 0 + 2 k π ) n = e j w 0 n e j 2 k π n = e j w 0 n e^{j(w_{0}+2k\pi)n}=e^{jw_{0}n}e^{j2k\pi n}=e^{jw_{0}n} ej(w0+2kπ)n=ejw0nej2kπn=ejw0n

我们知道,离散时间复指数信号 e j w 0 n e^{jw_{0}n} ejw0n就不具有随 w 0 w_{0} w0在数值上的增加而不断增加其振荡速率的特性,那它有什么样的规律呢?

看下面这幅图:

从上图我们可以看出如下信息:

随着 w 0 w_{0} w0从0开始增加,其振荡速率(正负幅值变动的速率)越来越快,直到 w 0 = π w_{0}=\pi w0=π为止,然后继续增加 w 0 w_{0} w0,其振荡速率就会下降,直到 w 0 = 2 π w_{0}=2\pi w0=2π为止,这时又得到和 w 0 = 0 w_{0}=0 w0=0同样的结果(常数序列)。因此,总结如下规律:

1.离散时间复指数的低频部分(也就是慢变化)位于 w 0 w_{0} w0在0, 2 π 2\pi 2π和任何其他 π \pi π的偶数倍附近;

2.而高频部分(也就是快变化),则位于 π \pi π的奇数倍值附近。

特别注意的是,在 w 0 = π w_{0}=\pi w0=π及其他任何 π \pi π的奇数倍处,有:

e j π n = ( e j π ) n = ( − 1 ) n e^{j\pi n}=(e^{j\pi})^{n}=(-1)^{n} ejπn=(ejπ)n=(1)n

以至信号在每一点上都改变符号,产生激烈振荡!

考察第二条性质

第二个性质也就是离散时间复指数信号的周期性问题。

思路:

若要使信号 e j w 0 n e^{jw_{0}n} ejw0n是周期的,周期为N,就必须有:
e j w 0 ( n + N ) = e j w 0 n e^{jw_{0}(n+N)}=e^{jw_{0}n} ejw0(n+N)=ejw0n

这样就必须满足:
e j w 0 N = 1 e^{jw_{0}N}=1 ejw0N=1

为了满足上式, w 0 N w_{0}N w0N必须是 2 π 2\pi 2π的整数倍,也就是必须存在一个 m m m,使得
w 0 N = 2 π m w_{0}N=2\pi m w0N=2πm

上式变形:
w 0 2 π = m N \frac{w_{0}}{2\pi}=\frac{m}{N} 2πw0=Nm

也就是说,如果 w 0 / 2 π w_{0}/2\pi w0/2π是一个有理数,则离散时间复指数序列 e j w 0 n e^{jw_{0}n} ejw0n就是周期的,否则不是;(事实上,这不就是要求 w 0 w_{0} w0 π \pi π的倍数吗?的确如此,只有这样, w 0 / 2 π w_{0}/2\pi w0/2π才是一个有理数呀!)

从这里看来,离散复指数序列的周期性是有条件的,这点和连续复指数信号也不一样。

离散时间复指数序列的基波周期和基波频率

由上面的分析可以知道,如果离散时间复指数序列 e j w 0 n e^{jw_{0}n} ejw0n满足其成为周期信号的条件,也就是存在一个整数 m m m,使得 w 0 N = 2 π m w_{0}N=2\pi m w0N=2πm,这样 e j w 0 n e^{jw_{0}n} ejw0n是一个周期的离散复指数序列,那么它的基波周期和基波频率就可以求得:

由于必须满足 w 0 N = 2 π m w_{0}N=2\pi m w0N=2πm,所以 N = 2 π m / w 0 N=2\pi m/w_{0} N=2πm/w0就是它的基波周期, w 0 w_{0} w0就是它的基波角频率。

说到这里还是不免觉得有点虚,那就不如用实际例子来说明下吧:(手稿)

如果用现有的结论来判断:

举个反例:

这里再说一句吧,如果 2 π / w 0 2\pi/w_{0} 2π/w0为一个整数的话,那么 N = 2 π / w 0 N=2\pi/w_{0} N=2π/w0就是该离散时间复指数信号 e j w 0 n e^{jw_{0}n} ejw0n的基波周期。

成谐波关系的周期离散时间复指数信号

手稿形式如下:

最后一部分很重要,下篇博文离散周期信号的傅里叶级数会用到!

  • 6
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值