- 博客(11)
- 收藏
- 关注
原创 DFT与FFT
回顾离散时间傅里叶级数DFSx[n]=∑k=<N>akejk2πNnak=ak±mN=1N∑n=<N>x[n]e−jk2πNn{\boxed{x[n] = \sum_{k=<N>} a_ke^{jk\frac{2\pi}{N}n} \qquada_k = a_{k\pm mN} = \frac 1N \sum_{n=<N>}x[n]e^{-jk\...
2020-01-16 12:51:01 985
原创 拉普拉斯变换与z变换
LTI系统对复指数信号对响应傅里叶分析的重要价值在于:1)相当广泛的信号都能用复指数信号的线性组合来表示;2)LTI系统对复指数的响应同样是一个复指数。傅里叶级数与傅里叶变换可以说明第一点,现证明第2点:对任一输入连续信号x(t)=estx(t) = e^{st}x(t)=est,LTI系统的输出为:y(t)=∫−∞+∞h(τ)x(t−τ)dτ=∫−∞+∞h(τ)es(t−τ)dτ=e...
2020-01-16 11:54:09 2096
原创 离散时间傅里叶变换
回顾离散时间周期信号傅里叶级数x[n]=∑k=<N>akejk2πNnak=ak±mN=1N∑n=<N>x[n]e−jk2πNn{\boxed{x[n] = \sum_{k=<N>} a_ke^{jk\frac{2\pi}{N}n} \qquada_k = a_{k\pm mN} = \frac 1N \sum_{n=<N>}x[n]e^{-jk...
2020-01-16 11:50:00 1425
原创 连续时间傅里叶变换
对连续时间非周期信号建立复指数信号的线性表示是傅里叶最重要的贡献之一。傅里叶认为,一个非周期信号能够看成是周期无限长的周期信号。当周期增大时,基波频率减小,当周期为无穷大时,这些频率分量构成连续域,从而傅里叶级数的求和就变成了积分。回顾连续时间周期信号的傅里叶级数x(t)=∑k=−∞+∞akejkw0t,k=0,±1,...ak=1T∫Tx(t)e−jkw0tdt{\boxed{x(t)=\s...
2020-01-16 11:45:22 1147
原创 离散时间周期信号傅里叶级数
离散复指数信号的重复性由于ej(w0+2π)n=ej2πnejw0n=ejw0ne^{j(w_0+2\pi)n}=e^{j2\pi n}e^{jw_0n}=e^{jw_0n}ej(w0+2π)n=ej2πnejw0n=ejw0n,所以具有频率w0w_0w0和w0±2π,w0±4π,...w0±2kπw_0\pm2\pi, w_0\pm4\pi,...w_0\pm2k\piw0±2π,w...
2020-01-16 11:39:55 4626
原创 连续时间周期信号傅里叶级数
谐波谐波即一系列具有公共周期T0T_0T0的波。要使一个复指数信号ejwte^{jwt}ejwt成为具有周期T0T_0T0的谐波,ejw(t+T0)=ejwte^{jw(t+T_0)}=e^{jwt}ejw(t+T0)=ejwtejwT0=1e^{jwT_0}=1ejwT0=1wT0=2πk,k=0,±1,...wT_0=2\pi k, k=0, \pm1, ...wT0=2π...
2020-01-16 11:33:42 4817
原创 信号与系统
信号信号的基本变换时移:x(t−t0)x(t-t_0)x(t−t0) 右移 t0t_0t0时间反转:x(−t)x(-t)x(−t)尺度变换:x(2t)x(2t)x(2t) 两倍速度,x(t/2)x(t/2)x(t/2) 速度降低一半连续信号与离散信号单位冲激与单位阶跃信号周期信号连续函数x(t)=x(t+T)x(t) = x(t + T)x(t)=x(t+T),使上式...
2020-01-16 11:14:13 1132
原创 深度学习的梯度消失/爆炸
考虑一个L层的网络,前向计算时,对于第l层:zl=wlal−1+blz_l = w_la_{l-1} + b_lzl=wlal−1+blal=δ(zl)a_l = \delta (z_l)al=δ(zl)反向计算时,对于第l层:dzl=wl+1dzl+1∗δ′(zl)dz_l = w_{l+1}dz_{l+1} * \delta'(z_l)dzl=wl+1dzl+1∗δ′...
2020-01-16 10:53:03 184
原创 tensorflow demo
使用tensorflow优化函数:j(w)=w2−10w+25j(w) = w^2 - 10w+ 25j(w)=w2−10w+25import numpy as npimport tensorflow as tf#初始化变量w = tf.Variable(0, dtype=tf.float32) #初始化cost function#type 1#cost = tf.add(tf.a...
2020-01-16 10:42:26 118
原创 neural network入门
导读sigmoidsoftmaxneural network trainingsigmoid (logistic regression)import numpy as npfrom numpy.linalg import choleskyimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3D...
2020-01-16 10:38:02 360
原创 Gradient Descent
gradient descent根据每次迭代时计算梯度的样本大小,可以分为bath, mini-batch, SGD;对gd的优化,可通过修改迭代步长或alpha值改进 ;优化迭代步长的算法有:momentum, RMSProp, adam等; 修改alpha值:learning rate decay,learning rate的衰减有不同的方法,以下列举常用的几种alpha = alpha_0...
2020-01-15 19:42:23 254
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人