POJ 3468 A Simple Problem with Integers

本文介绍了一种使用线段树解决区间更新与查询求和问题的方法。通过实例讲解了如何利用懒惰传播(laz)优化更新操作,减少不必要的节点更新,提高效率。

Time Limit:5000MS Memory Limit:131072KB

Description

You have N integers, A1, A2, … , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, … , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
“C a b c” means adding c to each of Aa, Aa+1, … , Ab. -10000 ≤ c ≤ 10000.
“Q a b” means querying the sum of Aa, Aa+1, … , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint
The sums may exceed the range of 32-bit integers.

【题意】 给一段序列,有两种指令,”C a b c”表示给[a, b]区间中的值全部增加c,”Q a b” 询问[a, b]区间中所有值的和。

【解题思路】 一道存粹的线段树区间更新求和题目,单点更新的升级版,其实做法和单点更新差不多,相较于单点更新它多了一个延缓标记—-laz,并多了两个函数,用于更新传递laz标记及节点的值,此题关键就是节点信息的更新及传递,所以要理解laz的用处,并在恰当的位置加入一个pushdown()函数。

(laz的用途)
每次更新并不需要更新到叶节点;
只需更新到相应的段就可以了,然后记录laz;
下次更新或者查询的时候,如果要查到该段的子节点;
就把laz加到子节点上去,再将该laz设为0;
这样就可以节省很多的时间。

【AC代码】

#include<stdio.h>
#define fff 100005
using namespace std;
long long a[fff];
struct node
{
    int l,r,len;
    long long sum,laz;
}tr[fff*4];
void pushup(int id)  //向上更新节点的值
{
    tr[id].sum=tr[id*2].sum+tr[id*2+1].sum;
}
void pushdown(int id)  //将当前结点的laz标记向下传递,并向下更新节点的值(记得将当前节点的laz标记置零)
{
    if(tr[id].laz)
    {
        tr[id*2].laz+=tr[id].laz;
        tr[id*2+1].laz+=tr[id].laz;
        tr[id*2].sum+=tr[id].laz*tr[id*2].len;
        tr[id*2+1].sum+=tr[id].laz*tr[id*2+1].len;
        tr[id].laz=0;  //当前结点laz标记置零,以免影响下次更新
    }
}
void build(int id,int l,int r)
{
    tr[id].l=l;
    tr[id].r=r;
    tr[id].laz=0;
    tr[id].len=r-l+1;
    if(l==r)
    {
        tr[id].sum=a[l];
        return;
    }
    int mid=(l+r)/2;
    build(id*2,l,mid);
    build(id*2+1,mid+1,r);
    pushup(id);
}
long long ans(int id,int l,int r)
{
    if(l==tr[id].l&&r==tr[id].r)
        return tr[id].sum;
    pushdown(id);  //每次询问的时候就可以向下更新,因此不会存在使用还未更新的节点的值来求和
    int mid=(tr[id].l+tr[id].r)/2;
    if(mid>=r)
        return ans(id*2,l,r);
    else if(mid<l)
        return ans(id*2+1,l,r);
    else
    {
        long long x=ans(id*2,l,mid);
        long long y=ans(id*2+1,mid+1,r);
        return x+y;
    }
}
void update(int id,int l,int r,int x)
{
    if(tr[id].l==l&&tr[id].r==r)
    {
        tr[id].laz+=x;
        tr[id].sum+=x*tr[id].len;
        return;
    }
    pushdown(id);  //将函数置于此,询问节点是就可以向下更新,且访问的不会是叶子节点
    int mid=(tr[id].l+tr[id].r)/2;
    if(mid<l)
        update(id*2+1,l,r,x);
    else if(mid>=r)
        update(id*2,l,r,x);
    else
    {
        update(id*2,l,mid,x);
        update(id*2+1,mid+1,r,x);
    }
    pushup(id);
}
int main()
{
    int n,q,x,y,z,i;
    char m[2];
    while(scanf("%d%d",&n,&q)!=EOF)
    {
        for(i=1;i<=n;i++)
            scanf("%lld",&a[i]);
        build(1,1,n);
        while(q--)
        {
            scanf("%s",m);
            if(m[0]=='C')
            {
                scanf("%d%d%d",&x,&y,&z);
                update(1,x,y,z);
            }
            else if(m[0]=='Q')
            {
                scanf("%d%d",&x,&y);
                printf("%lld\n",ans(1,x,y));
            }
        }
    }
    return 0;
}
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值