HttpClient Examples:Response handling

本文介绍了一种使用Apache HttpClient库处理HTTP响应的方法。通过实现ResponseHandler接口,开发者能够更专注于HTTP响应的内容处理,并确保资源得到适当释放。示例代码展示了如何发送GET请求并处理返回的数据。

官方主頁:http://hc.apache.org/

 

Components

Response handling

This example demonstrates how to process HTTP responses using a response handler. This is the recommended way of executing HTTP requests and processing HTTP responses. This approach enables the caller to concentrate on the process of digesting HTTP responses and to delegate the task of system resource deallocation to HttpClient. The use of an HTTP response guarantees that the underlying HTTP connection will be released back to the connection manager automatically in all cases.

 

這個例子示範怎樣去操作處理Http的請求應答。這里推薦的方式是執行HTTP請求和處理HTTP應答。这种做法使呼叫者把注意力集中在處理过程中HTTP响应,并委派的任务,系统资源释放到HttpClient 。使用HTTP响应的根本保证, HTTP连接将被释放回连接管理器会自动在所有情况下。

 

 

package cn.lake.util;

import org.apache.http.client.ResponseHandler;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.BasicResponseHandler;
import org.apache.http.impl.client.DefaultHttpClient;

/**
 * This example demonstrates the use of the {@link ResponseHandler} to simplify 
 * the process of processing the HTTP response and releasing associated resources.
 */
public class ClientWithResponseHandler {

    public final static void main(String[] args) throws Exception {
        
        HttpClient httpclient = new DefaultHttpClient();

        HttpGet httpget = new HttpGet("http://www.google.com/"); 

        System.out.println("executing request " + httpget.getURI());

        // Create a response handler
        ResponseHandler<String> responseHandler = new BasicResponseHandler();
        String responseBody = httpclient.execute(httpget, responseHandler);
        System.out.println(responseBody);
        
        System.out.println("----------------------------------------");
    }
    
}

 

 

(httpclient.execute(httpget,responseHandler );  )有報錯,原因還在查之中!

 

還有代碼前面那些注解,都是法律與叫你捐點錢,有心人可以去看;

 

翻譯的不好,請見諒!

 

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值