- 博客(49)
- 资源 (21)
- 收藏
- 关注
转载 常用写法小总结
1Numpy,Tensor,CPU,GPU对象之间的相互转换1)导入需要的模块、import torchimport numpy as npfrom torch.autograd import Variable 2)tensor间的转换
2021-06-01 22:28:27
227
转载 【基础知识】pytorch:nn.Softmax()
转载:https://blog.csdn.net/weixin_41391619/article/details/104823086这篇讲的很清楚,转一下本篇主要分析softmax函数中的dim参数, 首先介绍一下softmax函数:设 则接下来分析torch.nn里面的softmax函数y = torch.tensor([[[1.,2.,3.],[4.,5.,6.]],[[7.,8.,9.],[10.,11.,12.]]])#y的size是2,2,3。可以看成有两张表,每张表2..
2021-03-05 20:37:48
13625
2
转载 Ranking Loss/Margin Loss/Triplet Loss
转载:https://zhuanlan.zhihu.com/p/158853633前言ranking loss在很多不同的领域,任务和神经网络结构(比如siamese net或者Triplet net)中被广泛地应用。其广泛应用但缺乏对其命名标准化导致了其拥有很多其他别名,比如对比损失Contrastive loss,边缘损失Margin loss,铰链损失hinge loss和我们常见的三元组损失Triplet loss等。ranking loss函数:度量学习不像其他损失函数,比如交叉熵
2021-02-27 00:04:50
1255
1
转载 python中的[1:]、[::-1]、X[:,m:n]和X[1,:]
转载:https://blog.csdn.net/gaofengyan/article/details/906977431 Python中的[1:]意思是去掉列表中第一个元素(下标为0),去后面的元素进行操作,用于在遍历中统计个数:题:读入N名学生的成绩,将获得某一给定分数的学生人数输出。输入格式:输入在第1行给出不超过10^5^的正整数N,即学生总人数。随后1行给出N名学生的百分制整数成绩,中间以空格分隔。最后1行给出要查询的分数个数K(不超过N的正整数),随后是K个分数,中间以.
2021-02-26 00:32:18
1157
1
转载 【基础知识】GAN 基本原理以及数学证明
转自:https://www.cnblogs.com/jeffersonqin/p/13671232.htmlGAN概述2014 年,Ian Goodfellow 和他在蒙特利尔大学的同事发表了一篇震撼学界的论文。没错,我说的就是《Generative Adversarial Nets》,这标志着生成对抗网络(GAN)的诞生,而这是通过对计算图和博弈论的创新性结合。他们的研究展示,给定充分的建模能力,两个博弈模型能够通过简单的反向传播(backpropagation)来协同训练。这两个模型的角色
2020-12-25 17:15:37
1136
转载 【损失函数】MSE, MAE, Huber loss详解
转载:https://mp.weixin.qq.com/s/Xbi5iOh3xoBIK5kVmqbKYA https://baijiahao.baidu.com/s?id=1611951775526158371&wfr=spider&for=pc无论在机器学习还是深度领域中,损失函数都是一个非常重要的知识点。损失函数(Loss Function)是用来估量模型的预测值 f(x) 与真实值 y 的不一致程度。我们的目标就是最小化损失函数,让 f(x) 与 y 尽量接...
2020-12-15 19:51:59
51147
6
转载 optimizer注意点
转载:https://blog.csdn.net/gdymind/article/details/82708920重点是这句:注意,如果想要使用.cuda()方法来将model移到GPU中,一定要确保这一步在构造Optimizer之前。因为调用.cuda()之后,model里面的参数已经不是之前的参数了。以下是原文与优化函数相关的部分在torch.optim模块中,其中包含了大部分现在已有的流行的优化方法。如何使用Optimizer要想使用optimizer,需要创建一个opt.
2020-12-02 18:23:18
3097
1
转载 【基础知识】Warmup预热学习率
转载:https://blog.csdn.net/sinat_36618660/article/details/99650804学习率是神经网络训练中最重要的超参数之一,针对学习率的优化方式很多,Warmup是其中的一种(一)、什么是Warmup?Warmup是在ResNet论文中提到的一种学习率预热的方法,它在训练开始的时候先选择使用一个较小的学习率,训练了一些epoches或者steps(比如4个epoches,10000steps),再修改为预先设置的学习来进行训练。(二)、为什么使用War
2020-11-27 00:43:35
9797
转载 python中模块的__all__详细使用
python模块中的__all__,用于模块导入时限制,如:from module import *此时被导入模块若定义了__all__属性,则只有__all__内指定的属性、方法、类可被导入;若没定义,则导入模块内的所有公有属性,方法和类。1.实例1#bb.pyclass A(): def __init__(self,name,age): self.name=name self.age=ageclass B(): def __init__(
2020-11-18 22:03:47
1089
转载 Python-__builtin__与__builtins__的区别与关系
在学习Python时,很多人会问到__builtin__、__builtins__和builtins之间有什么关系。百度或Google一下,有很 多答案,但是这些答案要么不准确,要么只说了一点点,并不全面。本文将给大家一个较为全面的答案。以下结果是经过本人试验过的(测试环境:Linux Mint 14, Python2.7.3和Python3.2.3),并参考了Python的邮件列表。在Python中,有一个内建模块,该模块中有一些常用函数;而该模块在Python启动后、且没有执行程序员所写的任何代码前
2020-11-18 19:59:30
382
转载 【基础知识】FPN分割代码分析
转载:语义分割网络 - FPN 结构及代码初识 FPNFPN 全称 Feature Pyramid Network,翻译过来就是特征金字塔网络。何为特征金字塔,深度卷积神经网络(DCNN)提取的不同尺度特征组成的金字塔形状。本文提出了一种新型的特征融合方式,虽然距离论文提出的时间比较久了,但直到现在该结构仍较常用,尤其是在检测小目标时值得一试。本篇论文的目的是为了合理利用特征金字塔中不同尺度的语义信息。实际上在本篇文章之前,已经有很多特征融合的方式,本文开篇就介绍了各种多尺度特征的融合方式:
2020-10-23 19:18:00
2796
转载 Hard negative mining
转载:https://www.cnblogs.com/elitphil/p/12714479.html1.原文来自于:https://blog.csdn.net/qq_36570733/article/details/83444245?depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1&utm_source=distribute.pc_relevant.none-ta
2020-09-18 15:56:47
336
转载 Pytorch预训练模型以及修改
转载:https://www.cnblogs.com/wmlj/p/9917827.htmlPytorch预训练模型以及修改pytorch中自带几种常用的深度学习网络预训练模型,torchvision.models包中包含alexnet、densenet、inception、resnet、squeezenet、vgg等常用网络结构,并且提供了预训练模型,可通过调用来读取网络结构和预训练模型(模型参数)。往往为了加快学习进度,训练的初期直接加载pretrain模型中预先训练好的参数。加载model如下
2020-09-10 16:12:28
8126
2
转载 Invertible Image Rescaling 可逆图像缩放:完美恢复降采样后的高清图片(ECCV 2020 Oral )
论文地址:https://arxiv.org/pdf/2005.05650.pdf开源代码:https://github.com/pkuxmq/Invertible-Image-Rescaling(即将开源)研究背景不知道同学们平日里上网有没有遇到过这种情况:自己精心拍摄的高清照片/视频,想发给朋友or分享到朋友圈/微博/抖音/知乎,结果上传文件之后,直接被无良服务器压成超低分辨率渣画质。甚至有些图片/表情包在经过多次传播之后,画质已经糊到惨不忍睹。其实,图片的降采样(缩放)可以说.
2020-08-26 16:07:53
4491
转载 1*1卷积核的作用
作用:跨通道的特征整合 特征通道的升维和降维 减少卷积核参数(简化模型)1 跨通道的特征整合如果当前层和下一层都只有一个通道那么1×1卷积核确实没什么作用,但是如果它们分别为m层和n层的话,1×1卷积核可以起到一个跨通道聚合的作用,所以进一步可以起到降维(或者升维)的作用,起到减少参数的目的。这里通过一个例子来直观地介绍1x1卷积。输入6x6x1的矩阵,这里的1x1卷积形式为1x1x1,即为元素2,输出也是6x6x1的矩阵。但输出矩阵中的每个元素值是输入矩阵中每个元素值x2的结果。..
2020-08-13 13:40:55
52679
9
转载 【转载】一文看懂PatchGAN
最近看到PatchGAN很是好奇原理是什么,发现网上很多介绍的并不清楚.故墙外墙内来回几次,大概是清楚了.PatchGANPatchGAN其实指的是GAN的判别器,将判别器换成了全卷积网络.这么说并不严谨,PatchGAN和普通GAN判别器是有区别的,普通的GAN判别器是将输入映射成一个实数,即输入样本为真样本的概率.PatchGAN将输入映射为NxN的patch(矩阵)X,Xij的值代表每个patch为真样本的概率,将Xij求均值,即为判别器最终输出,X其实就是卷积层输出的特征图.从这个特征图可以
2020-08-03 17:32:56
6205
1
转载 DriveSeg:动态驾驶场景分割数据集
麻省理工学院和丰田发布DriveSeg数据集以加速自动驾驶研究,DriveSeg包含许多常见道路对象的精确像素级表示,并通过连续视频驾驶场景的镜头。我们如何训练自动驾驶模型,以加深对周围世界的认识?计算机能否从过去的经验中学习以识别未来的模式,以帮助他们安全地应对新的不可预测的情况?麻省理工学院运输与物流中心的AgeLab和丰田合作安全研究中心(CSRC)的研究人员发布了DriveSeg的开放数据集。通过发布DriveSeg,麻省理工学院和丰田汽车正在努力推进自动驾驶系统的研究,就像人类的感
2020-06-30 17:33:21
662
原创 latex 记下用过的方法
1 两张表格并排\begin{minipage}{\textwidth} \begin{minipage}[t]{0.45\textwidth} \centering \makeatletter\def\@captype{table}\makeatother\caption{表格标题1} \begin{tabular}{cccc} 表格内容 \end{tabular} \end{minipage} \begin{minipage}[t]{0.45
2020-06-10 23:45:38
1917
原创 python 记一下用过的一些方法
1 单通道转3通道import numpy as npwith tf.Session(): image, label = sess.run(next_batch) # batch_size=1 print(image.shape) # [224, 224, 1] image = np.concatenate((image, image, image), axis=-1) print(image.shape) # [224, 224, 3] # image有三个通道,每个通道都是原始的单通
2020-06-08 10:49:29
173
原创 FCNs代码学习
原文:Fully Convolutional Networks for Semantic Segmentation (FCNs) http://arxiv.org/pdf/1605.06211v1.pdf源码:https://github.com/shekkizh/FCN.tensorflow在vgg网络的基础上,将最后三层全连接改为cnn,即全都为卷积层了,fully convolutional networks,然后再反卷积,使输出与原始图像一致,这样就能画出每个像素点属于哪个类了,即实现了分割
2020-06-01 18:53:46
755
转载 清华大学综述:A Survey on Deep Transfer Learning
本文是清华大学智能技术与系统国家重点实验室近期发表的深度迁移学习综述,首次定义了深度迁移学习的四个分类,包括基于实例、映射、网络和对抗的迁移学习方法,并在每个方向上都给出了丰富的参考文献。机器之心对该综述进行了全文编译。论文:A Survey on Deep Transfer Learning论文地址:https://arxiv.org/pdf/1808.01974v1.pdf摘要...
2020-05-14 18:37:35
3768
原创 cityscapesScripts使用笔记
cityscapesScripts是cityscapes数据集的官方公开工具集,第一次用的时候有点迷茫,记录下使用笔记官方github:https://github.com/mcordts/cityscapesScripts/tree/master/cityscapesscripts数据集链接:www.cityscapes-dataset.net百度云下载:https://pan.ba...
2020-04-26 16:24:35
19526
36
转载 CNN滤波器
CNN 的第一步是把图片分成小块。我们通过选取一个给定宽度和高度的滤波器来实现这一步。滤波器会照在图片的小块 patch (图像区块)上。这些 patch 的大小与滤波器一样大。如之前视频所示,CNN用滤波器来把图片分割成更小的 patch,patch 的大小跟滤波器大小相同。我们可以在水平方向,或者竖直方向滑动滤波器对图片的不同部分进行聚焦。滤波器滑动的间隔被称作st...
2020-04-23 15:15:10
3446
转载 『计算机视觉』各种Normalization层辨析
『教程』Batch Normalization 层介绍知乎:详解深度学习中的Normalization,BN/LN/WN一、两个概念独立同分布(independent and identically distributed)独立同分布的数据可以简化常规机器学习模型的训练、提升机器学习模型的预测能力白化(whitening)去除特征之间的相关性 —> 独立;...
2019-12-23 16:23:20
546
1
原创 混淆矩阵 confusion matrices
百度百科混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用n行n列的矩阵形式来表示。具体评价指标有总体精度、制图精度、用户精度等,这些精度指标从不同的侧面反映了图像分类的精度。 [1] 在人工智能中,混淆矩阵(confusion matrix)是可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。在图像精度评价中,主要用于比较分类结果和实际测得值,可以把分类结果的精度显示在一个混...
2019-12-18 10:51:59
10276
转载 训练GAN的16个trick
本文转载自:https://mp.weixin.qq.com/s/d_W0O7LNqlBuZV87Ou9uqw 新智元公众号本文来自ICCV 2017的Talk:如何训练GAN,FAIR的研究员Soumith Chintala总结了训练GAN的16个技巧,例如输入的规范化,修改损失函数,生成器用Adam优化,使用Sofy和Noisy标签,等等。这是NIPS 2016的Soumith Chint...
2019-09-23 15:31:32
949
翻译 Densely Connected Convolutional Networks 学习笔记
github链接:https://github.com/liuzhuang13/DenseNetMXNet版本代码(有ImageNet预训练模型):https: //github.com/miraclewkf/DenseNet摘要 如果卷积神经网络中接近输入输出的层间增加更多连接,性能可以更好。我们据此提出了稠密的卷积神经网络(DenseNet),其中的每一层以前馈的...
2019-08-07 14:01:07
821
转载 Deep Residual Learning for Image Recognition 论文学习笔记
论文题目:深度残差学习在图像识别中的应用摘要 神经网络越深,训练越困难。我们提出了一种减轻网络训练负担的残差学习框架,比现有网络本质上层次更深。我们根据层输入显式地将层重新表示为学习残差函数,而不是学习未定义函数。同时,我们提供了全面实验数据,这些数据证明残差网络更容易优化,并且可以从深度增加中大大提高精度。在ImageNet数据集上,残差网络的深度可达152层--是vgg网络的...
2019-08-01 15:10:35
956
转载 ImageNet Classification with Deep Convolutional Neural Networks 论文学习
Alex-net是CNN的开山之作,拜读一下大作,自己总结下记得请~摘要 在ImageNet上训练了一个大型深度卷积神经网络,将120万高分辨率的图像分成1000类,在测试集上取得了TOP1(37.5%) TOP5(17.0%)的好成绩。Alex-net中有650K个神经元,60M个参数,5个卷积层,3个全连接层,1000维的softmax。为了训练得更快,我们采用非饱和神经...
2019-07-24 16:27:33
560
转载 一个Axis2 + eclipse开发Web服务的例子SayHi
快速开始1.1创建webApps项目启动Eclipse,新建立一个WebApps(File->New->Project->动态Web Project),给Project Name 为SayHi,其他保持不改变。1.2 建立一个用于发布WEB服务的JAVA类,设置如下图。public class test2 { public String sayHi(String name
2013-06-12 22:56:15
903
转载 JQuery、JSON、Ajax在Servlet中的应用
1、在Java中正确得到JSONObject,需要导入JSON的JAVA支持包“json-lib-2.3-jdk15.jar”,同时需导入 JSON依赖包“commons-logging-1.0.4.jar”,“commons-lang.jar”,“commons- collections.jar”,“commons-beanutils.jar”,“ezmorph-1.0.4.jar”;2
2013-05-19 22:33:45
13227
转载 在JSP页面中输出JSON格式数据
JSON-taglib是一套使在JSP页面中输出JSON格式数据的标签库。 JSON-taglib主页: http://json-taglib.sourceforge.net/index.html JAR包下载地址: http://sourceforge.net/projects/json-taglib/files/latest/download 使用方法:
2013-05-19 21:37:43
15764
转载 JavaScript获取checkbox的值
JavaScript获取checkbox的值是要遍历的!!var Value;Value='';function unloadme(){top.window.returnValue=Value;}function ok(){var tStr='';for (var i = 0;i//list为checkbox型的input的name{if(d
2013-05-19 21:32:03
1374
转载 AJAX例子
function showCustomer(str){var xmlhttp; if (str=="") { document.getElementById("txtHint").innerHTML=""; return; }if (window.XMLHttpRequest) {// code for IE7+, Firefox, Chrome
2013-05-15 23:26:53
589
转载 about cookie
HTTP客户端编程中最常碰见的问题,很多网站的内容都只是对注册用户可见的,这种情况下就必须要求使用正确的用户名和口令登录成功后,方可浏览到想要的页面。因为HTTP协议是无状态的,也就是连接的有效期只限于当前请求,请求内容结束后连接就关闭了。在这种情况下为了保存用户的登录信息必须使用到Cookie机制。以JSP/Servlet为例,当浏览器请求一个JSP或者是Servlet的页面时,应用服务器会返回
2013-03-24 21:43:59
811
转载 HTTPClient模拟登陆人人网
目的: 使用HTTPClient4.0.1登录到人人网,并从特定的网页抓取数据。 总结&注意事项: HttpClient(DefaultHttpClient)代表了一个会话,在同一个会话中,HttpClient对cookie自动进行管理(当然,也可以在程序中进行控制)。在同一个会话中,当使用post或是get发起一个新的请求时,一般需要对调用前一个会话的abort(
2013-03-24 21:29:18
894
转载 HttpsURLConnection 安全传输(HTTPS--Secure Hypertext Transfer Protocol-安全超文本传输协议)
HttpsURLConnection 扩展 HttpURLConnection,支持各种特定于 https 功能。此类使用 HostnameVerifier 和 SSLSocketFactory。为这两个类都定义了默认实现。但是,可以根据每个类(静态的)或每个实例来替换该实现。所有新 HttpsURLConnection 实例在创建时将被分配“默认的”静态值,通过在连接前调用每个实例适当的 s
2013-03-22 21:43:02
1465
转载 JAVA中URL的实现,寻址和访问网络资源
一、用JAVA实现URL 在JAVA中,Java.net包里面的类是进行网络编程的,其中java.net.URL类和java.net.URLConection类使编程者方便地利用URL在Internet上进行网络通信。1、创建URL对象 URL类有多种形式的构造函数:(1) URL ( String url) //url代表一个绝对地址,URL对象直接指向这
2013-03-22 21:36:14
2444
转载 UrlConnection连接和Socket连接的区别
关于UrlConnection连接和Socket连接的区别,只知道其中的原理如下:抽象一点的说,Socket只是一个供上层调用的抽象接口,隐藏了传输层协议的细节。urlconnection 基于Http协议,Http协议是应用层协议,对传输层Tcp协议进行了封装,是无状态协议,不需要你去考虑线程、同步、状态管理等,内部是通过socket进行连接和收发数据的,不过一般在数据传输完成之后需要关
2013-03-21 23:36:32
919
多个java 的jar 包
2013-03-20
org.apache.commons 系列的 JAR集合
2013-03-18
json-taglib-0.4.1.jar
2013-05-19
JSP页面中输出JSON格式数据的标签库json-taglib-0.4.1.jar
2013-05-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人