- 博客(9)
- 资源 (4)
- 收藏
- 关注
原创 大型语言模型在生物医学问答中的应用:BioASQ挑战的性能分析与未来展望
本研究提出的生物医学问答系统采用了创新的两阶段检索-问答框架,旨在充分利用大型语言模型(LLMs)的优势,同时克服生物医学领域特有的挑战。信息检索系统:负责从PubMed等大规模生物医学文献数据库中检索相关文档。问答系统:利用检索到的相关文档,结合LLMs的强大能力,生成准确、相关的答案。提高检索效率,缩小LLMs需要处理的信息范围增强答案的准确性和可靠性,通过提供相关上下文提高系统的可解释性,允许追溯答案的来源。
2024-08-14 11:05:36 467
原创 如何利用文心一言辅助技术选型
文心一言作为百度基于文心大模型技术推出的生成式对话产品,凭借其强大的技术实力和广泛的应用场景,正在逐渐改变人们的生活方式。未来,随着技术的不断进步,文心一言将在更多领域发挥更大的作用。在本文中,演示了文心一言在技术选型中的作用。
2024-05-22 17:00:20 1775 1
原创 Neo4j Docker 安装指南
Docker 是一个开源的应用容器引擎,允许开发者打包应用及其依赖项到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。容器完全使用沙箱机制,相互之间不会有任何接口。
2024-05-22 11:00:49 1755
原创 图 和 Neo4j
Neo4j 是一种高性能的图数据库管理系统,特别优化以处理复杂的数据关系和网络分析。它存储和处理数据的方式与传统的关系型数据库截然不同,因为它将数据关系作为第一级实体来处理,这使得关系查询非常高效。
2024-05-22 10:41:15 891
原创 知识图谱和LLM:利用 Neo4j 利用大型语言模型 探索现实世界的用例
在 2023 年,ChatGPT 等大型语言模型(LLM)凭借其卓越的类人文本理解和生成能力,迅速席卷全球,成为科技领域的瞩目焦点。这些模型不仅能够灵活适应各种对话环境,还能回答涉及不同主题的复杂问题,甚至在创意写作方面展现出惊人的模拟能力。它们的出现彻底改变了人类与机器之间的交互方式,引领了人工智能应用的新浪潮,让我们看到了人工智能在未来社会的无限可能。蒸汽朋克电脑墙,上面有一面由在透明管中奔跑的蚂蚁操作的魔镜(中途)
2024-05-17 14:59:28 1881
原创 复杂 RAG(检索增强生成)的初步介绍
倘若您正在寻觅一份关于RAG的非技术性介绍,涵盖了初学者常见问题的解答,并期望深入探讨其实际应用场景,那么您来对地方了。在此,我们为您精心准备了关于RAG的详尽细分,旨在帮助您全面了解其内涵与价值。在本文中,我们详尽地探讨了实现RAG过程中所需关注的多样化技术要点,深入剖析了分块策略、查询增强技术、层次结构运用、多跳推理机制以及知识图谱概念等多个层面。此外,我们还对RAG基础设施领域内尚未解决的难题和潜在的机遇进行了讨论,并介绍了一系列构建RAG管道的基础设施解决方案,以期为读者提供更为全面的视角。
2024-05-17 11:27:56 1587
原创 企业应用中的RAG技术:提升信息检索与生成
此外,RAG在个性化内容创作和推荐系统中的应用也十分关键,它通过分析用户的偏好和历史互动数据,帮助生成定制化的内容和推荐,提升用户体验。RAG框架通过引入额外的相关数据来丰富模型的提示信息,确保了LLM的生成响应基于真实可靠的信息,从而显著提升了模型的效能。尽管更加复杂,但是从第一天开始建立具有多跳能力的 RAG 系统可能被证明是一项有价值的投资,以适应问题、数据源和用例的范围,这些问题、数据源和用例最终将随着越来越复杂的工作流被 LLM 和 RAG 自动化而出现。
2024-05-17 11:02:05 694
原创 利用JMX监控Websphere Application Server6.1的J2EE应用服务运行状态
利用JMX监控Websphere Application Server6.1的J2EE应用服务运行状态
2013-04-12 20:24:27 849 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人