
YOLOv8有效涨点专栏

文章平均质量分 96
专栏持续复现网络上各种顶会内容,已经发布改进机制170余篇(全网改进最全的专栏,质量分96分全网最高),改进内容支持(分类、检测、分割、追踪、关键点、OBB检测),同时订阅本专栏您会收获一个包含本专栏全部改进机制的文件(非常适合小白点击即可运行)和视频讲解,同时有群方便大家进行沟通以及答疑。
优惠券已抵扣
余额抵扣
还需支付
¥199.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
Snu77
在职算法工程师,本人所有改进专栏都包含完整代码和详细步骤教程,同时购买专栏的读者可入Qq群享受专栏相关问题答疑服务和完整文件,助力您成功涨点。
展开
-
YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
Hello,各位读者们好,本专栏自开设两个月以来已经更新改进教程120+余篇其中包含C2f、主干、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新,订阅本专栏以后你不仅可以收获跟专栏的阅读权限,同时可以进Qq群,里面包含集成我所有创新的YOLO最新目录,和我本人录制的视频讲解教程,如果你想要在YOLOv8系列收获一篇论文,我相信订阅本专栏后你一定会有所收获~YOLOv8改进有效系列目录。原创 2023-12-30 22:44:58 · 153386 阅读 · 98 评论 -
YOLOv8 | 代码逐行解析(一) | 项目目录构造分析
Hello,大家好这次给大家带来的不是改进,是整个YOLOv8项目的分析,整个系列大概会更新7-10篇左右的文章,从项目的目录到每一个功能代码的都会进行详细的讲解,同时YOLOv8改进系列也突破了三十篇文章,最后预计本专栏持续更新会在年底更新上百篇的改进教程, 所以大家如果没有订阅专栏可以提前订阅以下。下面开始进行YOLOv8逐行解析的一篇——项目目录构造分析在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,。原创 2023-12-16 08:00:00 · 32251 阅读 · 24 评论 -
YOLOv8性能评估指标->mAP、Precision、Recall、FPS、IoU
这篇博客,主要给大家讲解我们在训练yolov8时生成的结果文件中各个图片及其中指标的含义,帮助大家更深入的理解,以及我们在评估模型时和发表论文时主要关注的参数有那些。本文通过举例训练过程中的某一时间的结果来帮助大家理解,大家阅读过程中如有任何问题可以在评论区提问出来,我会帮助大家解答。首先我们来看一个在一次训练完成之后都能生可以评估YOLOv8模型在目标检测任务中的准确性、召回率、速度和边界框质量等性能表现。根据具体需求,我们可以选择更适合任务场景的模型和参数配置。最后祝大家学习顺利,科研成功,多多论文!!原创 2023-11-02 11:12:19 · 95455 阅读 · 151 评论 -
详解YOLOv8网络结构/环境搭建/数据集获取/训练/推理/验证/导出/部署
YOLO(You Only Look Once)系列算法因其高效、准确等特点而备受瞩目。由2023年Ultralytics公司发布了YOLO的最新版本YOLOv8是结合前几代YOLO的基础上的一个融合改进版。本文YOLOv8网络结构/环境搭建/数据集获取/训练/推理/验证/导出/部署,从网络结构的讲解从模型的网络结构讲解到模型的部署都有详细介绍,同时在本专栏中还包括YOLOv8模型系列的改进包括个人提出的创新点,传统卷积、注意力机制、损失函数的修改教程,能够帮助你的论文获得创新点。原创 2023-10-28 23:50:21 · 73899 阅读 · 35 评论 -
YOLOv8改进 | 检测头篇 | 独家创新自适应性DWConv改进v8检测头独创FADWCHead(全网独家首发创新)
本文给大家带来的最新改进是独家创新利用改进YOLOv8的检测头,频率自适应膨胀卷积(FADC)FADC的核心思想是根据图像的局部频率成分动态调整膨胀率。这种方法使得网络能够根据图像内容的局部变化来调整感受野,从而在细节丰富或高频信息密集的区域提高性能本文内容为博主全网独创新下图为精度对比表现。YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制目录一、本文介绍二、原理介绍三、核心代码四、添加教程4.1 修改一4.2 修改二4.3 修改三4.4 修改四。原创 2025-03-08 02:55:46 · 1739 阅读 · 8 评论 -
YOLOv8改进 | 细节创新篇 | 最新双时相特征聚合模块BFAM助力yolov8有效涨点(二次创新C2f全网独家首发)
本文给大家带来的最新改进机制是2024年的双时相特征聚合模块BFAM,其中双时相特征聚合模块(BFAM)基于空间-时间特征聚合多种感受野的特征,同时保留了细粒度信息和纹理信息,增强了变化检测的准确性,我将其用于二次创新yolov8中的C2f模块,目的是为了提高了图像变化检测的准确性,解决噪声和信息丢失的问题,本文的内容为独家创新,下图为BFAM网络的结构图。欢迎大家订阅我的专栏一起学习YOLO,购买专栏读者联系读者入群获取进阶项目文件!原创 2025-03-08 03:22:32 · 1097 阅读 · 0 评论 -
YOLOv8改进 | 细节创新篇 | 最新动态特征融合模块DFF二次创新C2f助力yolov8有效涨点(全网独家首发)
本文给大家带来的最新改进机制是D-Net: Dynamic Large Kernel with Dynamic Feature Fusion for Volumetric Medical Image Segmentation文章提出的动态特征融合(DFF)模块,我将其用于二次创新C2f机制,利用其能够解决不同尺度的局部特征在融合时的信息丢失的能力, DFF基于全局信息自适应地融合不同尺度的局部特征图,使得网络能够在更大的感受野下有效结合多尺度信息,通过动态融合,DFF能够更好地保留局部特征的细节,同时增强全原创 2025-03-08 03:36:14 · 1200 阅读 · 0 评论 -
YOLOv8改进 | 特殊场景检测篇 | 最新的多尺度特征提取DICAM(全网独家首发,增强水下图像的质量)
本文给大家带来的最新改进机制是多尺度特征提取和通道注意力机制DICAM,深度Inception和通道注意力模块(DICAM)主要用于用于增强水下图像的质量、对比度和色偏。所提出的DICAM模型考虑了水下图像的比例退化和不均匀色偏,从而提高图像的质量。通过在两个公开的水下图像增强数据集上的广泛实验,验证了提出的模型在全参考和无参考图像质量评估指标方面。欢迎大家订阅我的专栏一起学习YOLO,购买专栏读者联系读者入群获取进阶项目文件!原创 2025-03-08 03:47:40 · 1049 阅读 · 4 评论 -
YOLOv8改进 | Neck篇 | 独创HFPN利用分层特征融合块HFFB模块融合多层次特征改进yolov8(全网独家创新)
本文给大家带来的最新改进是利用分层特征融合块HFFB创新yolov8的neck部分我称之为HFPN,这个模块可以融合局部特征、全局特征、中间特征将三种特征融合在一起辅助yolov8进行检测,经过我的设计分为三种可以针对大目标、小目标、标准目标的检测方式均不同,大家可以根据自己的数据集进行不同的选择,本文的内容为我独家创新。YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍二、原理介绍三、核心代码四、添加方法4.1 修改一4.2 修改二4.3 修改三4.4 修改四。原创 2025-03-08 04:09:26 · 1473 阅读 · 0 评论 -
YOLOv8改进 | 主干/Backbone篇 | 2024最新重写星辰StarNet助力yolov8有效涨点(yolov8全系列轻量化)
本文给大家带来的最新改进机制是Rewrite the Stars,其探讨了“星操作”(即元素级的乘法)在网络设计中的潜力。文章提出,星操作能够将输入映射到高维的非线性特征空间中,而不需要增加网络的宽度。这个过程类似于机器学习中的核技巧,但通过保持网络的紧凑性和低延迟实现了高效的计算。本文将其添加到YOLOv8中并且根据yolov8的N、S、M、L、X进行缩放和扩张,yolov8全系列可实现轻量化。原创 2024-12-17 00:07:16 · 2878 阅读 · 0 评论 -
YOLOv8改进 | Conv篇 | 2024最新Kolmogorov-Arnold网络架构下的KANConv(包含九种不同类型激活函数的KANConv2d)
本文给大家带来的改进机制是2024最新的,Kolmogorov-Arnold 网络(Convolutional KANs),这种架构旨在将 Kolmogorov-Arnold 网络(KANs)的非线性激活函数整合到卷积层中,九种KANConv2d分别是:WavKANConv2d, RBFKANConv2d, KANConv2d, ReLUKANConv2d, FasterKANConv2d, ChebyKANConv2d, JacobiKANConv2d, FastKANConv2d, GRAMKANCon原创 2024-10-24 17:30:05 · 4363 阅读 · 26 评论 -
YOLOv8改进 | 添加注意力篇 | 2024最新的空间和通道协同注意力模块SCSA改进yolov8有校涨点(含二次创新C2f)
到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制。原创 2024-11-03 02:48:25 · 6280 阅读 · 8 评论 -
YOLOv8改进 | Conv篇 | 2024最新线性可变形卷积LDConv替换传统下采样(附代码 + 修改方式)
本文给大家带来的改进机制是利用2024最新的线性可变形卷积LDConv替换YOLOv8的传统下采样操作(值得一提的是这个作者和RFAConv是同一个作者),介绍了一种新型的卷积操作——线性可变形卷积(LDConv)。LDConv 旨在解决标准卷积操作的局限性,标准卷积在固定形状和大小的局部窗口中进行采样,难以动态适应不同物体的形状。可变形卷积(Deformable Conv)虽然允许灵活的采样位置,但其参数数量随着卷积核大小呈平方增长,计算效率较低。LDConv 提供了比可变形卷积更大的灵活性,允许卷积核的原创 2024-10-14 04:00:00 · 3428 阅读 · 8 评论 -
YOLOv8改进 | Neck篇 | 2024-TPAMI最新机制FreqFusion二次创新BiFPN(全网独家创新)
本文给大家带来的改进机制是利用2024-TPAMI最新机制FreqFusion二次创新BiFPN,《Frequency-aware Feature Fusion for Dense Image Prediction》这篇文章的主要贡献是提出了一种新的特征融合方法(FreqFusion),旨在解决密集图像预测任务中的类别内不一致性和边界位移问题。本文将其和BiFPN进行结合实现二次创新BiFPN机制,相比于原始的YOLOv8本文的内容可以达到一定的轻量化,本文的内容在作者的多类别数据集上实现了涨点。原创 2024-10-13 20:47:50 · 2149 阅读 · 3 评论 -
YOLOv8改进 | Conv篇 | 2024最新ECCV最新大感受野的小波卷积WTConv创新C2f(附代码 + 修改教程)
官方论文地址点击此处即可跳转官方代码地址点击此处即可跳转这篇名为《用于大感受野的小波卷积》的文章提出了一种新的卷积层,称为WTConv(小波卷积层),它利用小波变换(WT)来解决卷积神经网络(CNN)在实现大感受野时遇到的过度参数化问题。WTConv的主要目的是通过对输入数据的不同频率带进行处理,使CNN能够更有效地捕捉局部和全局特征,而传统的CNN主要只能处理局部特征。以下是文章的主要内容总结:1. 问题背景:传统的CNN受限于卷积核的大小,难以有效捕捉全局上下文信息。原创 2024-10-12 08:30:00 · 4077 阅读 · 17 评论 -
YOLOv8改进 | 损失函数篇 | 2024高质量的目标检测边界框回归损失Unified-IoU、FocalUIoU、FocalInvUIoU(设置动态epoch参数)
本文给大家带来的改进机制是最近新提出的高质量的目标检测边界框回归损失Unified-IoU,其通过动态调整模型对不同质量预测框的关注,优化目标检测中的边界框回归精度。UIoU引入了FocalBox方法,通过缩放预测框与真实框分配权重,并采用了退火策略(引入动态参数epoch),逐渐将模型的注意力从低质量预测框转移到高质量预测框,平衡了训练速度与检测精度。其还有一定的解决样本不平衡问题,同时该损失函数可以和现有的任何边界框回归损失函数进行结合,例如ShapeIoU和其结合可以形成二次创新,它是一种类似于之前原创 2024-10-11 22:45:17 · 3497 阅读 · 4 评论 -
YOLOv8改进 | Conv篇 | 利用ModulatedDeformConv优化YOLO下采样(降低参数 + 网络层数 + 计算量)
本文给大家带来的改进机制是ModulatedDeformConv来替换我们模型的下采样操作,其主要思想是通过引入可学习的空间偏移量,实现感受野的动态调整,增强卷积神经网络对图像中几何变换的适应能力。不同于其它的Conv这种可变形Conv主要就是通过学习下采样的位置来进行提高检测精度,但是这种方法可以减少计算量,网络层数,网络参数,所以这个方法还是比较推荐大家在自己数据集上尝试一下的。原创 2024-09-16 01:04:21 · 2493 阅读 · 4 评论 -
YOLOv8改进 | Conv篇 | 最新轻量化自适应提取模块LAE助力边缘设备部署计算(附代码 + 修改教程 + 运行教程)
本文给大家带来的一个改进机制是最新由LSM-YOLO提出的轻量化自适应特征提取(Lightweight Adaptive Extraction, LAE)模块,其是LSM-YOLO模型中的关键模块,旨在进行多尺度特征提取,同时降低计算成本。LAE通过以下方式实现更有效的特征提取:多尺度特征提取、自适应特征提取。LAE模块可以在不增加额外参数的情况下提高了模型对ROI区域的检测性能。原创 2024-09-14 21:16:14 · 2844 阅读 · 1 评论 -
YOLOv8 | 代码逐行解析(五) | YOLOv8中损失函数计算的详解包含Cls和Bbox计算的解析,小白必看(下)
本文给大家带来的是YOLOv8中的损失函数计算的完整解析,内容包括v8DetectionLoss的解析,以及BboxLoss的解析,如果你相对损失函数的计算原理,本文内容绝对会对你有所帮助,全文内容包含1万两千字,手打分析文字超过5000字,全部为干货内容,包含示例解释辅助大家理解,对于小白来说十分适合阅读。YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备。原创 2024-07-07 15:41:50 · 4366 阅读 · 13 评论 -
YOLOv8 | 代码逐行解析(四) | YOLOv8中从检测头到损失函数计算的详解,小白必看(上)
本文给大家带来的是YOLOv8中从检测头结构分析到损失函数各种计算的详解,本文将从检测头的网络结构讲起,同时分析其中的原理(包括代码和网络结构图对比),最重要的是分析检测头的输出,因为检测头的输出是需要输出给损失函数的计算不同阶段的输出不一样所以我们在讲损失函数计算的时候需要先明白检测头的输出和其中的一些参数的定义,本文内容为我独家整理和分析,手打每一行的代码分析并包含各种举例分析对于小白来说绝对有所收获。目录一、本文介绍二、原理介绍2.1 YOLOv8解耦头2.2 YOLOv8解耦头代码分析。原创 2024-07-06 23:26:04 · 4554 阅读 · 7 评论 -
YOLOv8改进 | 代码逐行解析(三) | YOLO中的Mosaic增强详解(带你分析你的数据集是如何输入给模型,mosaic)
本文给大家带来的是YOLOv8中的Mosaic增强代码的详解,可能有部分人对于这一部分比较陌生,有的读者可能知道Mosaic增强但是不知道其工作原理,具体来说Mosaic增强就是指我们的数据集中的图片在输入给模型之前的一个处理过程(我们的图片并不是直接就输入给模型了,大家的训练结果中的结果检测图片大家可以看到数据集中多个图片会组合在一起这就是简单的Mosaic增强),下面我就来讲解一下其在YOLOv8中工作原理和代码定义,下面图片为一个Mosaic增强后的图片。目录一、本文介绍二、代码详解。原创 2024-07-05 00:58:39 · 4409 阅读 · 1 评论 -
YOLOv8改进 | Conv篇 | 利用Mamba的MLLABLock二次创新C2f(全网独家首发)
官方论文地址点击此处即可跳转官方代码地址点击此处即可跳转在这篇论文中,的原理是通过将Mamba模型的一些核心设计融入线性注意力机制,从而提升模型的性能。具体来说,MLLA主要整合了Mamba中的“忘记门”(forget gate)和模块设计(block design)这两个关键因素,这些因素被认为是Mamba成功的主要原因。忘记门(Forget Gate)忘记门提供了局部偏差和位置信息。所有的忘记门元素严格限制在0到1之间,这意味着模型在接收到当前输入后会持续衰减先前的隐藏状态。原创 2024-06-28 01:00:00 · 4456 阅读 · 21 评论 -
YOLOv8改进 | 添加注意力篇 | 结合Mamba注意力机制MLLA助力YOLOv8有效涨点(全网独家首发)
本文给大家带来的改进机制是结合号称超越Transformer架构的Mamba架构的最新注意力机制MLLA,本文将其和我们YOLOv8进行结合,的原理是通过将Mamba模型的一些核心设计融入线性注意力机制,从而提升模型的性能。具体来说,MLLA主要整合了Mamba中的“忘记门”(forget gate)和模块设计(block design)这两个关键因素,同时MLLA通过使用位置编码(RoPE)来替代忘记门,从而在保持并行计算和快速推理速度的同时,提供必要的位置信息。原创 2024-06-27 05:00:00 · 6208 阅读 · 17 评论 -
YOLOv8改进 | Conv篇 | 利用YOLOv10提出的SCDown魔改YOLOv8进行下采样(附代码 + 结构图 + 添加教程)
本文给大家带来的改进机制是利用YOLOv10提出的SCDown魔改YOLOv8进行下采样,其是更高效的下采样。具体而言,其首先利用点卷积调整通道维度,然后利用深度卷积进行空间下采样。这将计算成本减少到和参数数量减少到。同时,这最大限度地保留了下采样过程中的信息,从而在减少延迟的同时实现竞争性性能。本文附网络结构图,完整修改方案以及多种使用方法!原创 2024-06-07 03:45:00 · 4991 阅读 · 4 评论 -
YOLOv8改进 | Conv篇 | 利用YOLOv10提出的C2fCIB魔改YOLOv8(附代码 + 完整修改教程)
本文给大家带来的改进机制是利用YOLOv10提出的C2fCIB模块助力YOLOv8进行有效涨点,其中C2fCIB模块所用到的CIB模块是一种紧凑的倒置块结构,它采用廉价的深度卷积进行空间混合,并采用成本效益高的点卷积进行通道混合。本文针对该方法给出多种使用方法,大家可以根据自己的数据集来针对性的使用,同时本文附C2fCIB网络结构图!原创 2024-06-05 03:45:00 · 4859 阅读 · 12 评论 -
YOLOv8改进 | 添加注意力篇 | 利用YOLOv10提出的PSA注意力机制助力YOLOv8有效涨点(附代码 + 详细修改教程)
本文给大家带来的改进机制是YOLOv10提出的PSA注意力机制,自注意力在各种视觉任务中得到了广泛应用,因为它具有显著的全局建模能力。然而,自注意力机制表现出较高的计算复杂度和内存占用。为了解决这个问题,鉴于注意力头冗余的普遍存在,我们提出了一种高效的部分自注意力(PSA)模块设计,其能够在不显著增加计算成本的情况下提升YOLO模型的性能!本文附其网络结构图辅助大家理解该结构,同时本文包含YOLOv8添加该注意力机制的方法!欢迎大家订阅我的专栏一起学习YOLO!原创 2024-06-03 03:45:00 · 4671 阅读 · 2 评论 -
YOLOv8改进 | 图像去噪篇 | 单阶段盲真实图像去噪网络RIDNet辅助YOLOv8图像去噪(全网独家首发)
本文给大家带来的改进机制是单阶段盲真实图像去噪网络RIDNet,RIDNet(Real Image Denoising with Feature Attention)是一个用于真实图像去噪的卷积神经网络(CNN),旨在解决现有去噪方法在处理真实噪声图像时性能受限的问题。通过单阶段结构和特征注意机制,RIDNet在多种数据集上展示了其优越性,下面的图片为其效果图片包括和其它图像图像网络的对比图。欢迎大家订阅我的专栏一起学习YOLO!原创 2024-05-20 05:00:00 · 2839 阅读 · 9 评论 -
YOLOv8改进 | 图像去噪篇 | 一种基于注意力机制的图像去噪网络ADNet融合YOLOv8(全网独家首发)
到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制。原创 2024-05-17 04:00:00 · 3505 阅读 · 4 评论 -
YOLOv8改进 | 图像修复 | 适用多种复杂场景的全能图像修复网络AirNet助力YOLOv8检测(全网独家首发)
官方代码地址点击此处即可跳转 文章提出的一种名为AirNet(All-in-one Image Restoration Network)的全能图像修复网络。AirNet由对比基降解编码器(CBDE)和降解引导修复网络(DGRN)两个神经模块组成,能够在未知损坏类型和程度的情况下恢复受损图像。这两部分共同工作,能够处理多种类型的图像退化,而无需预先知道损坏的具体信息。原创 2024-05-16 03:30:00 · 1898 阅读 · 8 评论 -
YOLOv8改进 | 独家创新篇 | 利用MobileNetV4的UIB模块二次创新C2f(全网独家首发)
本文给大家带来的改进机制是利用MobileNetV4的UIB模块二次创新C2f,其中UIB模块来自2024.5月发布的MobileNetV4网络,其是一种高度优化的神经网络架构,专为移动设备设计。它最新的改动总结主要有两点,采用了通用反向瓶颈(UIB,也就是本文利用的结构)和针对移动加速器优化的Mobile MQA注意力模块(一种全新的注意力机制)。我将其用于C2f的二次创新在V8n上参数量为220W(下降约一百万),计算量为6.2GFLOPs,非常适用于想要轻量化网络模型的读者来使用,同时本文结构为本专栏原创 2024-05-09 01:00:00 · 4719 阅读 · 6 评论 -
YOLOv8改进 | 主干篇 | 2024.5全新的移动端网络MobileNetV4改进YOLOv8(含MobileNetV4全部版本改进)
本文给大家带来的改进机制是MobileNetV4,MobileNetV4是一种高度优化的神经网络架构,专为移动设备设计。它最新的改动总结主要有两点,采用了通用反向瓶颈(UIB)和针对移动加速器优化的Mobile MQA注意力模块(一种全新的注意力机制)。这些创新有助于在不牺牲准确性的情况下,显著提高推理速度和计算效率。MobileNetV4作为一种移动端的网络,其实它的论文中主要是配合蒸馏技术进行改进,大家可以搭配本专栏的蒸馏进行二次创新涨点。原创 2024-05-08 04:30:00 · 8525 阅读 · 27 评论 -
YOLOv8蒸馏 | 知识蒸馏 | 利用模型蒸馏改进YOLOv8进行无损涨点 | CWDLoss(在线蒸馏 + 离线蒸馏)
这篇文章给大家带来的是模型的蒸馏,利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv8的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了!欢迎大家订阅我的专栏一起学习YOLO!原创 2024-04-26 04:00:00 · 5279 阅读 · 21 评论 -
YOLOv8蒸馏 | 知识蒸馏 | 利用模型蒸馏改进YOLOv8进行无损涨点 | MGDLoss(在线蒸馏 + 离线蒸馏)
这篇文章给大家带来的是模型的蒸馏,利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv8的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可,所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了!欢迎大家订阅我的专栏一起学习YOLO!原创 2024-04-25 04:00:00 · 2919 阅读 · 0 评论 -
YOLOv8蒸馏 | 知识蒸馏 | 利用模型蒸馏改进YOLOv8进行无损涨点 | MimicLoss(在线蒸馏 + 离线蒸馏)
这篇文章给大家带来的是模型的蒸馏,利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv8的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可,所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了!原创 2024-04-23 03:15:00 · 3456 阅读 · 0 评论 -
YOLOv8蒸馏 | 知识蒸馏 | 利用模型蒸馏改进YOLOv8进行无损涨点 | 在线蒸馏 (附代码 + 完整文件 + 解析教程)
这篇文章给大家带来的是模型的蒸馏利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv8的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了,本文内容为在线蒸馏教程,之前的文章为离线蒸馏!原创 2024-04-22 04:00:00 · 4190 阅读 · 22 评论 -
YOLOv8改进 | Conv篇 | 利用CVPR2024-DynamicConv提出的GhostModule改进C2f(全网独家首发)
动态卷积(Dynamic Convolution)是《DynamicConv.pdf》中提出的一种关键技术,旨在增加网络的参数量而几乎不增加额外的浮点运算(FLOPs)。主要原理:动态卷积通过对每个输入样本动态选择或组合不同的卷积核(称为"experts"),来处理输入数据。这种方法可以视为是对传统卷积操作的扩展,它允许网络根据输入的不同自适应地调整其参数。原创 2024-04-19 04:15:00 · 6098 阅读 · 16 评论 -
YOLOv8改进 | Conv篇 | CVPR2024最新DynamicConv替换下采样(包含C2f创新改进,解决低FLOPs陷阱)
动态卷积(Dynamic Convolution)是《DynamicConv.pdf》中提出的一种关键技术,旨在增加网络的参数量而几乎不增加额外的浮点运算(FLOPs)。1. 动态卷积的定义:动态卷积通过对每个输入样本动态选择或组合不同的卷积核(称为"experts"),来处理输入数据。这种方法可以视为是对传统卷积操作的扩展,它允许网络根据输入的不同自适应地调整其参数。原创 2024-04-18 23:44:53 · 5840 阅读 · 1 评论 -
YOLOv8改进 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样)
本文给大家带来的改进机制是Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样)在小波变换中,Haar小波作为一种基本的小波函数,用于将图像数据分解为多个层次的近似和细节信息,这是一种多分辨率的分析方法。我将其用在YOLOv8上其明显降低参数和GFLOPs在V8n上使用该机制后参数量为270W计算量GFLOPs为7.5欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。欢迎大家订阅我的专栏一起学习YOLO!目录一、本文介绍二、原理介绍。原创 2024-04-18 04:00:00 · 4358 阅读 · 8 评论 -
YOLOv8蒸馏 | 知识蒸馏 | 利用模型蒸馏改进YOLOv8进行无损涨点 | 在线蒸馏 (附代码 + 完整文件 + 解析教程)
知识蒸馏的主要方法可以分为三种:基于响应的知识蒸馏(利用教师模型的输出或对最终预测的模仿)、基于特征的知识蒸馏(使用教师模型中间层的特征表示)以及基于关系的知识蒸馏(利用模型内部不同层或不同数据点之间的关系)。每种方法都旨在从大模型中提取有效信息,并通过特定的损失函数将这些信息灌输给学生模型。知识蒸馏是一个多样化的领域,包括各种不同的方法来优化深度学习模型的性能和大小。原创 2024-04-17 04:00:00 · 8484 阅读 · 27 评论 -
YOLOv8改进 | 检测头篇 | 自研超分辨率检测头HATHead助力超分辨率检测(混合注意力变换器检测头)
本文给大家带来的改进机制是由由我本人利用HAT注意力机制(超分辨率注意力机制)结合V8检测头去掉其中的部分内容形成一种全新的超分辨率检测头。混合注意力变换器(HAT)的设计理念是通过融合通道注意力和自注意力机制来提升单图像超分辨率重建的性能。通道注意力关注于识别哪些通道更重要,而自注意力则关注于图像内部各个位置之间的关系。HAT利用这两种注意力机制,有效地整合了全局的像素信息。本文中均有添加方法和原理解析,本文内容为我独家创新。欢迎大家订阅我的专栏一起学习YOLO!原创 2024-04-12 02:45:00 · 5870 阅读 · 11 评论