YOLOv11有效涨点专栏
文章平均质量分 96
ultralytics最新作品YOLOv11,本专栏致力于搜寻全网最新以及各种顶会机制优化YOLOv11网络结构实现涨点、轻量化、提升FPS等,内容适用于分类、检测、分割、追踪、关键点、OBB、World检测,订阅本专栏您会收获一个包含本专栏全部改进机制的文件和视频讲解,同时有群方便大家进行答疑。
Snu77
在职算法工程师,本人所有改进专栏都包含完整代码和详细步骤教程,同时购买专栏的读者可入Qq群享受专栏相关问题答疑服务和完整文件,助力您成功涨点。
展开
-
YOLOv11改进 | 主干/Backbone篇 | CSWinTransformer交叉形窗口目标检测网络(适配yolov11全系列版本)
本文给大家带来的改进机制是其基于Transformer架构,创新性地引入了交叉形窗口自注意力机制,用于有效地并行处理图像的水平和垂直条带,形成交叉形窗口以提高计算效率。它还提出了局部增强位置编码(LePE),更好地处理局部位置信息,我将其替换YOLOv10的特征提取网络,用于提取更有用的特征。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,同时该主干网络也提供多种版本,大家可以在源代码中进行修改版本的使用。本文通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中。原创 2024-11-01 17:40:59 · 538 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN的目标检测网络(适配yolov11全系列)
本文给大家来的改进机制是RepViT,用其替换我们整个主干网络,其是今年最新推出的主干网络,其主要思想是将轻量级视觉变换器(ViT)的设计原则应用于传统的轻量级卷积神经网络(CNN)。我将其替换整个YOLOv11的Backbone,实现了大幅度涨点。我对修改后的网络(我用的最轻量的版本),在一个包含1000张图片包含大中小的检测目标的数据集上(共有20+类别),进行训练测试,发现所有的目标上均有一定程度的涨点效果,下面我会附上基础版本和修改版本的训练对比图。原创 2024-11-01 16:35:49 · 486 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 华为最新目标检测网络VanillaNet(适配yolov11的N、S、M、L、X)
本文给大家来的改进机制是华为最新VanillaNet网络VanillaNet是一种注重极简主义和效率的神经网络架构。它的设计简单,层数较少,避免了像深度架构和自注意力这样的复杂操作(需要注意的是该网络结构的通道数会被放大,GFLOPs的量会很高)。我将其替换整个YOLOv10的Backbone,在一些大目标和小目标检测上均有涨点,效果比上一篇RepViT的效果要好。原创 2024-11-01 14:56:26 · 653 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 轻量化ConvNeXtV2全卷积掩码自编码器目标检测网络(适配yolov11全系列)
本文给大家带来的改进机制是ConvNeXtV2网络,ConvNeXt V2是一种新型的卷积神经网络架构,它融合了自监督学习技术和架构改进,特别是加入了全卷积掩码自编码器框架和全局响应归一化(GRN)层。我将其替换YOLOv11的特征提取网络,用于提取更有用的特征。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,同时该主干网络也提供多种版本,大家可以在源代码中进行修改版本的使用。本文通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中。本文内容可根据yolov11的N、S、M、L、原创 2024-11-01 14:15:32 · 436 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 添加最新的LSKNet遥感目标检测网络主干 (可根据yolov11版本自行放缩通道数独家创新)
本文给大家带来的改进内容是LSKNet(Large Kernel Selection, LK Selection),其是一种专为遥感目标检测设计的网络架构,其核心思想是动态调整其大的空间感受野,以更好地捕捉遥感场景中不同对象的范围上下文。实验部分我在一个包含三十多个类别的数据集上进行实验,其中包含大目标检测和小目标检测,mAP的平均涨点幅度在0.04-0.1之间(也有极个别的情况没有涨点),同时官方的版本只提供了一个大版本,我在其基础上提供一个轻量化版本给大家选择,本文会先给大家对比试验的结果,供大家参考。原创 2024-11-01 11:47:19 · 538 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 目标检测网络FasterNeT轻量化网络助力yolov11改进(提高FPS和检测效率)
本文给大家带来的改进机制是FasterNet网络,将其用来替换我们的特征提取网络,其旨在提高计算速度而不牺牲准确性,特别是在视觉任务中。它通过一种称为部分卷积(PConv)的新技术来减少冗余计算和内存访问。这种方法使得FasterNet在多种设备上运行速度比其他网络快得多,同时在各种视觉任务中保持高准确率。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,大家可以在源代码中进行修改版本的使用。本文通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中。原创 2024-11-01 11:02:09 · 797 阅读 · 0 评论 -
YOLOv11改进 | Conv篇 | 在线重参数化卷积OREPA助力二次创新yolov11的C3k2机制(提高推理速度 + FPS)
本文给大家带来的改进机制是一种重参数化的卷积模块OREPA,这种重参数化模块非常适合用于二次创新,我们可以将其替换网络中的其它卷积模块可以不影响推理速度的同时让模型学习到更多的特征。OREPA是通过在线卷积重参数化(Online Convolutional Re-parameterization)来减少深度学习模型训练的成本和复杂性。这种方法主要包括两个阶段:首先,利用一个特殊的线性缩放层来优化在线块的性能;其次,通过将复杂的训练时模块压缩成一个单一的卷积来减少训练开销。原创 2024-10-31 17:16:54 · 637 阅读 · 1 评论 -
YOLOv11改进 | Conv篇 | 重参数化多元分支模块DiverseBranchBlock二次创新C3k2(有效涨点,重参数化模块高效推理)
本文带来的改进机制是YOLOv11模型与多元分支模块(Diverse Branch Block)的结合,Diverse Branch Block (DBB) 是一种用于增强卷积神经网络性能的结构重新参数化技术。这种技术的核心在于结合多样化的分支,这些分支具有不同的尺度和复杂度,从而丰富特征空间。我将其放在了YOLOv11的不同位置上均有一定的涨点幅度,同时这个DBB模块的参数量并不会上涨太多,我添加三个该机制到模型中,GFLOPs上涨了0.04。原创 2024-10-31 16:51:17 · 474 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 反向残差块目标检测网络EMO一种轻量级的CNN架构(支持yolov11全系列轻量化)
本文给大家带来的改进机制是反向残差块网络EMO,其的构成块iRMB在之前我已经发过了,同时进行了二次创新,本文的网络就是由iRMB组成的网络EMO,所以我们二次创新之后的iEMA也可以用于这个网络中,再次形成二次创新,同时本文的主干网络为一种轻量级的CNN架构,在开始之前给大家推荐一下我的专栏,本专栏每周更新3-10篇最新前沿机制 | 包括二次创新全网无重复,以及融合改进,更有包含我所有的YOLOv11仓库集成文件(文件内集成我所有的改进机制全部注册完毕可以直接运行)和交流群和视频讲解提供给大家,原创 2024-10-31 16:21:46 · 625 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 2024最新目标检测网络MobileNetV4改进YOLOv11(支持根据yolov11版本nsmlx进行自由放缩通道数)
本文给大家带来的改进机制是,其发布时间是2024.5月。MobileNetV4是一种高度优化的神经网络架构,专为移动设备设计。它最新的改动总结主要有两点采用了通用反向瓶颈(UIB)和针对移动加速器优化的Mobile MQA注意力模块(一种全新的注意力机制)。这些创新有助于在不牺牲准确性的情况下,显著提高推理速度和计算效率。MobileNetV4作为一种移动端的网络,其实它的论文中主要是配合蒸馏技术进行改进,大家可以搭配本专栏的蒸馏进行二次创新涨点。欢迎大家订阅我的专栏一起学习YOLO!原创 2024-10-31 14:34:51 · 768 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 利用轻量化目标检测网络MobileNetV3替换Backbone(yolov11全系列轻量化)
本文给大家带来的改进机制是,其主要改进思想集中在结合硬件感知的网络架构搜索(NAS)和NetAdapt算法,以优化移动设备CPU上的性能。它采用了新颖的架构设计,包括反转残差结构和线性瓶颈层,以及新的高效分割解码器Lite Reduced Atrous Spatial Pyramid Pooling(LR-ASPP),以提升在移动分类、检测和分割任务上的表现。实验表明,MobileNets在资源和准确性的权衡方面表现出色,并在多种应用(如对象检测、细粒度分类、面部属性识别和大规模地理定位)中展现了其有效性。原创 2024-10-31 13:08:14 · 653 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 利用目标检测轻量化网络MobileNetV2替换Backbone(yolov11系列全系轻量化)
本文给大家带来的改进机制是,其是专为移动和嵌入式视觉应用设计的轻量化网络结构。其在MobilNetV1的基础上采用反转残差结构和线性瓶颈层。这种结构通过轻量级的深度卷积和线性卷积过滤特征,同时去除狭窄层中的非线性,以维持表征能力。MobileNetV2在性能上和精度上都要比V1版本强很多,其在多种应用(如对象检测、细粒度分类、面部属性识别和大规模地理定位)中都展现了一定的有效性。YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍二、MobileNetV2的框架原理。原创 2024-10-31 11:43:09 · 736 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 利用目标检测移动端网络MobileNetV1替换Backbone(支持v11n、v11s、v11m)
本文给大家带来的改进机制是,其是专为移动和嵌入式视觉应用设计的轻量化网络结构。这些模型基于简化的架构,并利用深度可分离卷积构建轻量级深度神经网络,其引入了两个简单的全局超参数,用于在延迟和准确性之间进行有效的权衡。实验表明,MobileNets在资源和准确性的权衡方面表现出色,并在多种应用(如对象检测、细粒度分类、面部属性识别和大规模地理定位)中展现了其有效性,这个模型非常适合轻量化的读者来使用。YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍。原创 2024-10-31 11:22:23 · 895 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 华为移动端目标检测模型Ghostnetv2改进特征提取网络
本文给大家带来的改进机制是华为移动端模型Ghostnetv2,华为GhostNetV2是为移动应用设计的轻量级卷积神经网络(CNN),旨在提供更快的推理速度,其引入了一种硬件友好的注意力机制,称为DFC注意力。这个注意力机制是基于全连接层构建的,它的设计目的是在通用硬件上快速执行,并且能够捕捉像素之间的长距离依赖关系,本文将通过首先介绍其主要原理,然后手把手教大家如何使用该网络结构改进我们的特征提取网络。欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。原创 2024-10-24 23:56:42 · 1025 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 华为移动端目标检测模型Ghostnetv1改进yolov11特征提取网络
本文给大家带来的改进机制是华为移动端模型Ghostnetv1,华为的GhostNet是一种轻量级卷积神经网络,旨在在计算资源有限的嵌入式设备上实现高性能的图像分类。GhostNet的关键思想在于通过引入Ghost模块,以较低的计算成本增加了特征图的数量,从而提高了模型的性能。这种方法在计算资源有限的情况下,尤其适用于图像分类任务,并在一些基准测试中表现出了很好的性能。本文将通过首先介绍其主要原理,然后手把手教大家如何使用该网络结构改进我们的特征提取网络。华为移动端目标检测模型Ghostnetv1改进yolo原创 2024-10-24 23:45:35 · 1063 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 轻量化目标检测网络MobileViTv2改进yolov11助力轻量化模型
本文给大家带来的改进机制是MobileViT系列的V2版本,其作为MobileNet网络的挑战者,其效果自然不用多说,MobileViT模型是为移动设备设计的轻量级、通用目的视觉变换器。它融合了卷积神经网络(CNN)和视觉变换器(ViT)的优势,旨在在保持高效性能的同时减少模型参数和降低延迟。通过其创新的MobileViT Block和多尺度训练方法,MobileViT在多个视觉任务上取得了优异的结果,欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。原创 2024-10-24 23:24:34 · 871 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 轻量化目标检测网络MobileViTv1改进yolov11有效涨点
本文给大家带来的改进机制是MobileViT系列的V1版本,其作为MobileNet网络的挑战者,其效果自然不用多说,MobileViT模型是为移动设备设计的轻量级、通用目的视觉变换器。它融合了卷积神经网络(CNN)和视觉变换器(ViT)的优势,旨在在保持高效性能的同时减少模型参数和降低延迟。通过其创新的MobileViT Block和多尺度训练方法,MobileViT在多个视觉任务上取得了优异的结果,欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。原创 2024-10-24 23:16:17 · 942 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 利用RT-DETR主干网络PPHGNetV2助力yolov11v11有效涨点(轻量化目标检测网络)
本文给大家带来利用RT-DETR模型主干HGNet去替换YOLOv11的主干,RT-DETR是今年由百度推出的第一款实时的ViT模型,其在实时检测的领域上号称是打败了YOLO系列,其利用两个主干一个是HGNet一个是ResNet,其中HGNet就是我们今天来讲解的网络结构模型,这个网络结构目前还没有推出论文,所以其理论知识在网络上也是非常的少,我也是根据网络结构图进行了分析(精度mAP提高0.05)。YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍。原创 2024-10-24 23:00:02 · 861 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | SwinTransformer目标检测网络( 代码 + 修改教程)
本文给大家带来的改进机制是利用替换YOLOv11中的骨干网络其是一个开创性的视觉变换器模型,它通过使用位移窗口来构建分层的特征图,有效地适应了计算机视觉任务。与传统的变换器模型不同,Swin Transformer的自注意力计算仅限于局部窗口内,使得计算复杂度与图像大小成线性关系,而非二次方。这种设计不仅提高了模型的效率,还保持了强大的特征提取能力。Swin Transformer的创新在于其能够在不同层次上捕捉图像的细节和全局信息,使其成为各种视觉任务的强大通用骨干网络。原创 2024-10-24 22:45:32 · 1219 阅读 · 1 评论 -
YOLOv11改进 | 主干/Backbone篇 | RevColV1可逆列目标检测网络(特征解耦助力小目标检测)
本文给大家带来的是主干网络RevColV1,翻译过来就是可逆列网络去发表于ICLR2022,其是一种新型的神经网络设计(和以前的网络结构的传播方式不太一样),由多个子网络(列)通过多级可逆连接组成。这种设计允许在前向传播过程中特征解耦,保持总信息无压缩或丢弃。其非常适合数据集庞大的目标检测任务,数据集数量越多其效果性能越好,亲测在包含1000个图片的数据集上其涨点效果就非常明显了,大家可以多动手尝试,其RevColV2的论文同时已经发布如果代码开源我也会第一时间给大家上传。原创 2024-10-24 22:31:11 · 794 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 轻量级移动端网络ShuffleNetV2(附代码+修改教程)
本文给大家带来的改进内容是ShuffleNetV2,这是一种为移动设备设计的高效CNN架构。其在ShuffleNetV1的基础上强调除了FLOPs之外,还应考虑速度、内存访问成本和平台特性。(我在YOLOv11n上修改该主干降低了GFLOPs,但是参数量还是有一定上涨,其非常适合轻量化的读者来使用,同时精度也有一定程度的上涨)。本文通过介绍其主要框架原理,然后教你如何添加该网络结构到网络模型中。原创 2024-10-24 00:18:52 · 919 阅读 · 0 评论 -
YOLOv11改进 | 主干/Backbone篇 | 轻量级移动端网络ShuffleNetV1(附代码+修改教程)
本文给大家带来的改进内容是ShuffleNetV1,这是一种为移动设备设计的高效CNN架构。它通过使用点群卷积和通道混洗等操作,减少了计算成本,同时保持了准确性,通过这些技术,ShuffleNet在降低计算复杂度的同时,也优化了内存使用,使其更适合低功耗的移动设备(我在YOLOv11n上修改该主干计算量仅为7.0GFLOPs,但是参数量还是有一定上涨,其非常适合轻量化的读者来使用。本文通过介绍其主要框架原理,然后教你如何添加该网络结构到网络模型中。原创 2024-10-24 00:18:45 · 877 阅读 · 0 评论 -
YOLOv11改进 | Conv篇 |手把手教你添加动态蛇形卷积Dynamic Snake Convolution (辅助C3k2进行特征提取)
动态蛇形卷积的灵感来源于对管状结构的特殊性的观察和理解,在分割拓扑管状结构、血管和道路等类型的管状结构时,任务的复杂性增加,因为这些结构的局部结构可能非常细长和迂回,而整体形态也可能多变。因此为了应对这个挑战,作者研究团队注意到了管状结构的特殊性,并提出了动态蛇形卷积(Dynamic Snake Convolution)这个方法。动态蛇形卷积通过自适应地聚焦于细长和迂回的局部结构,准确地捕捉管状结构的特征。这种卷积方法的核心思想是,通过动态形状的卷积核来增强感知能力,针对管状结构的特征提取进行优化。原创 2024-10-23 17:41:38 · 1033 阅读 · 0 评论 -
YOLOv11改进 | Conv篇 | AKConv轻量级架构下的高效检测(附代码 + 修改方法 + 二次创新)
本文给大家带来的改进内容是AKConv是一种创新的变核卷积,它旨在解决标准卷积操作中的固有缺陷(采样形状是固定的),AKConv的核心思想在于它为卷积核提供了任意数量的参数和任意采样形状,能够使用任意数量的参数(如1, 2, 3, 4, 5, 6, 7等)来提取特征,这在标准卷积和可变形卷积中并未实现。AKConv能够根据硬件环境,使卷积参数的数量呈线性增减非常适用于轻量化模型的读者)。原创 2024-10-23 17:18:45 · 823 阅读 · 2 评论 -
YOLOv11改进 | 添加注意力机制篇 | 添加ACmix自注意力与卷积混合模型改善模型特征识别效率(包含二次创新C2PSA机制)
本文给大家带来的改进机制是ACmix自注意力机制的改进版本,它的核心思想是,传统卷积操作和自注意力模块的大部分计算都可以通过1x1的卷积来实现。ACmix首先使用1x1卷积对输入特征图进行投影,生成一组中间特征,然后根据不同的范式,即自注意力和卷积方式,分别重用和聚合这些中间特征。这样,ACmix既能利用自注意力的全局感知能力,又能通过卷积捕获局部特征,从而在保持较低计算成本的同时,提高模型的性能。本文包含二次创新PSA机制!YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录。原创 2024-10-23 14:47:43 · 1088 阅读 · 0 评论 -
YOLOv11改进 | Conv篇 | 轻量级下采样方法ContextGuided(二次创新C3k2, 助力多尺度特征融合)
本文给大家带来的是改进机制是一种替换Conv的模块,其是在CGNet论文中提出的一种模块,其基本原理是模拟人类视觉系统依赖上下文信息来理解场景。CG block 用于捕获局部特征、周围上下文和全局上下文,并将这些信息融合起来以提高准确性。(经过我检验分别在三种数据集上,大中小均进行了150轮次的实验,均有一定程度上的涨点,下面我选取了一种中等大小的数据集的结果进行了对比),同时本文的修改方法和之前的普通卷积模块也有所不同,大家需要注意看章节四进行修改。适用检测目标:所有的目标检测均有一定的提点。原创 2024-10-23 00:18:05 · 938 阅读 · 0 评论 -
YOLOv11改进 | 添加注意力篇 | 一文带你改进GAM、CBAM、CA、ECA等通道注意力机制和多头注意力机制
这篇文章给大家带来的改进机制是一个汇总篇,包含一些简单的注意力机制,本来一直不想发这些内容的(网上教程太多了,发出来增加文章数量也没什么意义),但是群内的读者很多都问我这些机制所以单独出一期视频来汇总一些比较简单的注意力机制添加的方法和使用教程,本文的内容不会过度的去解释原理,更多的是从从代码的使用上和实用的角度出发去写这篇教程。欢迎大家订阅我的专栏一起学习YOLO!YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍二、GAM2.1 GAM的介绍2.2 GAM的核心代码。原创 2024-10-23 00:06:22 · 773 阅读 · 0 评论 -
YOLOv11改进 | Conv篇 | 利用FasterBlock二次创新C3k2提出一种全新的结构(全网独家首发)
本文给大家带来的改进机制是利用FasterNet的FasterBlock改进特征提取网络,将其用来改进ResNet网络,其旨在提高计算速度而不牺牲准确性,特别是在视觉任务中。它通过一种称为部分卷积(PConv)的新技术来减少冗余计算和内存访问。这种方法使得FasterNet在多种设备上运行速度比其他网络快得多,同时在各种视觉任务中保持高准确率,同时本文的内容为我独家创新,全网仅此一份,同时本文的改进机制参数量下降50W,V10n的计算量为6.9GFLOPs。欢迎大家订阅我的专栏一起学习YOLO!原创 2024-10-23 00:02:53 · 928 阅读 · 0 评论 -
YOLOv11改进 | 添加注意力篇 | 利用SENetV2改进网络结构 (全网独家改进,含二次创新C2PSA、SPPF)
本文给大家带来的改进机制是SENetV2其是一种通过调整卷积网络中的通道关系来提升性能的网络结构。SENet并不是一个独立的网络模型,而是一个可以和现有的任何一个模型相结合的模块可以看作是一种通道型的注意力机制但是相对于SENetV1来说V2又在全局的角度进行了考虑。在SENet中,所谓的挤压和激励(Squeeze-and-Excitation)操作是作为一个单元添加到传统的卷积网络结构中,如残差单元中文章中我会把修改好的残差单元给大家大家直接复制粘贴即可使用。原创 2024-10-22 23:51:44 · 810 阅读 · 0 评论 -
YOLOv11改进 | 添加注意力机制 | 添加TripletAttention三重注意力机制(附代码+机制原理+添加教程)
本文给大家带来的改进是Triplet Attention三重注意力机制。这个机制,它通过三个不同的视角来分析输入的数据,就好比三个人从不同的角度来观察同一幅画,然后共同决定哪些部分最值得注意。三重注意力机制的主要思想是在网络中引入了一种新的注意力模块,这个模块包含三个分支,分别关注图像的不同维度。比如说,一个分支可能专注于图像的宽度,另一个分支专注于高度,第三个分支则聚焦于图像的深度,即色彩和纹理等特征。这样一来,网络就能够更全面地理解图像内容,就像是得到了一副三维眼镜,能够看到图片的立体效果一样。原创 2024-10-22 00:01:47 · 961 阅读 · 0 评论 -
YOLOv11改进 | 添加注意力机制 | 添加iRMB倒置残差块注意力机制(轻量化注意力机制)
本文给家大家带来的改进机制是iRMB,其是在论文Rethinking Mobile Block for Efficient Attention-based Models种提出,论文提出了一个新的主干网络EMO后面我也会教大家如何使用该主干,本文先教大家使用该文中提出的注意力机制其主要思想是将轻量级的CNN架构与基于注意力的模型结构相结合有点类似ACmix),我将iRMB和C2f结合,然后也将其用在了检测头种进行尝试三种结果进行对比,针对的作用也不相同,但是无论那种实验均有一定涨点效果。原创 2024-10-21 23:40:35 · 834 阅读 · 0 评论 -
YOLOv11改进 | SPPF篇 | FocalModulation替换SPPF(精度更高的空间金字塔池化)
本文给大家带来的改进是用FocalModulation技术来替换了原有的SPPF(快速空间金字塔池化)模块。FocalModulation是今年新提出的特征增强方法,它利用注意力机制来聚焦于图像中的关键区域,从而提高模型对这些区域的识别能力。与SPPF相比,FocalModulation不仅能够处理不同尺寸的输入图像,还能更精确地识别和定位图像中的对象。这一技术特别适用于处理那些难以检测的小对象或在复杂背景中的对象(更多的检测效果请看第二章)。我进行了简单的实验,这个FocalModulation能够提升一原创 2024-10-21 23:25:34 · 1097 阅读 · 0 评论 -
YOLOv11改进 | 代码逐行解析(三) | 从yaml文件到网络结构解析到模型定义
本文给大家带来的是YOLOv11项目的解读,之前给大家分析了YOLOv11的项目文件分析,这一篇文章给大家带来的是模型训练从我们的yaml文件定义到模型的定义部分的讲解,我们一般只知道如何去训练模型,和配置yaml文件,但是对于yaml文件是如何输入到模型里,模型如何将yaml文件解析出来的确是不知道的,本文的内容接上一篇的代码逐行解析(一) 项目目录分析,本文对于小白来说非常友好,非常推荐大家进行阅读,深度的了解模型的工作原理已经流程,下面我们从yaml文件来讲解。原创 2024-10-21 22:59:10 · 2424 阅读 · 6 评论 -
YOLOv11改进 | 代码逐行解析(二) | yolov11中的Mosaic增强详解
本文给大家带来的是YOLOv10中的Mosaic增强代码的详解,可能有部分人对于这一部分比较陌生,有的读者可能知道Mosaic增强但是不知道其工作原理,具体来说Mosaic增强就是指我们的数据集中的图片在输入给模型之前的一个处理过程(我们的图片并不是直接就输入给模型了,大家的训练结果中的结果检测图片大家可以看到数据集中多个图片会组合在一起这就是简单的Mosaic增强),下面我就来讲解一下其在YOLOv10中工作原理和代码定义,下面图片为一个Mosaic增强后的图片。。原创 2024-10-20 23:03:25 · 1472 阅读 · 7 评论 -
YOLOv11改进 | Conv篇 | 利用YOLO-MS的MSBlock轻量化网络结构(含二次创新C3k2)
本文给大家带来的改进机制是利用YOLO-MS提出的一种针对于实时目标检测的MSBlock模块其其实不能算是Conv但是其应该是一整个模块,我们将其用于C2f中组合出一种新的结构,来替换我们网络中的模块可以达到一种轻量化的作用,我将其用于我的数据集上实验,包括多个类别的数据集,其在轻量网络结构的同时,却能够提高一定的mAP精度,所以这是一种十分高效的模块,该网络结构非常适合那些模型精度已经无法提到,想要从轻量化模型的角度入手的读者使用,同时该机制包含二次创新的机会。原创 2024-10-20 23:01:42 · 1054 阅读 · 0 评论 -
YOLOv11改进 | Conv篇 | 2024最新轻量化自适应提取模块LAE助力边缘设备部署计算(附代码 + 修改教程 + 运行教程)
本文给大家带来的一个改进机制是最新由LSM-YOLO提出的轻量化自适应特征提取(Lightweight Adaptive Extraction, LAE)模块,其是LSM-YOLO模型中的关键模块,旨在进行多尺度特征提取,同时降低计算成本。LAE通过以下方式实现更有效的特征提取:多尺度特征提取、自适应特征提取。LAE模块可以在不增加额外参数的情况下提高了模型对ROI区域的检测性能。欢迎大家订阅我的专栏一起学习YOLO!YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍。原创 2024-10-20 22:44:40 · 1132 阅读 · 0 评论 -
YOLOv11改进 | 添加注意力机制篇 | 添加FocusedLinearAttention助力yolov11实现有效涨点(含二次创新C2PSA机制)
本文给大家带来的改进机制是(聚焦线性注意力)是一种用于视觉Transformer模型的注意力机制(但是其也可以用在我们的YOLO系列当中从而提高检测精度),旨在提高效率和表现力。其解决了两个在传统线性注意力方法中存在的问题:聚焦能力和特征多样性。这种方法通过一个高效的映射函数和秩恢复模块来提高计算效率和性能,使其在处理视觉任务时更加高效和有效。简言之,Focused Linear Attention是对传统线性注意力方法的一种重要改进,提高了模型的聚焦能力和特征表达的多样性。通过本文你能够了解到。原创 2024-10-20 22:34:53 · 1177 阅读 · 0 评论 -
YOLOv11改进 | 添加注意力机制篇 | 添加DAttention (DAT)注意力机制二次创新C2PSA(Best Paper)
本文给大家带来的是YOLOv11改进的教程,其发布于2022年CVPR2022上同时被评选为Best Paper由此可以证明其是一种十分有效的改进机制,其主要的引入可变形注意力机制和动态采样点(听着是不是和可变形动态卷积DCN挺相似)。同时在网络结构中引入一个DAT计算量由8.9GFLOPs涨到了9.4GFLOPs。本文的讲解主要包含三方面:DAT的网络结构思想、DAttention的代码复现,如何添加DAttention到你的结构中实现涨点,下面先来分享我测试的对比图。原创 2024-10-20 21:02:52 · 985 阅读 · 0 评论 -
YOLOv11改进 | Conv篇 | 添加SCConv空间和通道重构卷积二次创新C3k2(辅助yolov11进行特征提取)
本文给大家带来的改进内容是SCConv,即空间和通道重构卷积,是一种发布于2023.9月份的一个新的改进机制。它的核心创新在于能够同时处理图像的空间(形状、结构)和通道色彩、深度)信息,这样的处理方式使得SCConv在分析图像时更加精细和高效。这种技术不仅适用于复杂场景的图像处理,还能在普通的对象检测任务中提供更高的精确度(亲测在小目标检测和正常的物体检测中都有效提点)。SCConv的这种能力,特别是在处理大量数据和复杂图像时的优势。原创 2024-10-16 23:42:48 · 1398 阅读 · 0 评论 -
YOLOv11改进 | Conv篇 | 添加RFAConv重塑空间注意力助力yolov11有效涨点(深度学习的前沿突破)
本文给大家带来的改进机制是RFAConv,全称为,是一种全新的空间注意力机制。与传统的空间注意力方法相比,RFAConv能够更有效地处理图像中的细节和复杂模式(适用于所有的检测对象都有一定的提点)。这不仅让YOLOv10在识别和定位目标时更加精准,还大幅提升了处理速度和效率。本文章深入会探讨RFAConv如何在YOLOv10中发挥作用,以及它是如何改进在我们的YOLOv10中的。我将通过案例的角度来带大家分析其有效性(结果训练结果对比图)。适用检测目标:亲测所有的目标检测均有一定的提点。原创 2024-10-16 22:50:08 · 1219 阅读 · 4 评论