算法:求连续子数组的最大和

如题:

  给一个int数组:1,2,6

 其中连续的子数组有六个:

  1;                                    

  1,2;                                    

  1,2,6;

  2;

  2,6;

  6;

其中每个子数组的和=每个数字相加 (比如 第三组:1+2+6=9)


求:

   所有子数组中和最大的值。(比如:max=1+2+6=9)


自己写的demo示例:

public class Max {
    
    public static int max(int[] arr) {
        
        int len = arr.length;
        
        int max_out = arr[len - 1];
        
        for (int i = len - 2; i >= 0; i--) {
            int sum = arr[i];
            int max_inner = arr[i];
            
            
            for (int j = i + 1; j < len; j++) {
                int temp = sum + arr[j];
                if (temp >= max_inner) {
                    max_inner = temp;
                }
                sum = temp;
            }
            if (max_inner >= max_out) {
                max_out = max_inner;
            }
            
            
            
            
        }
       
        return max_out;
    }
    
    public static void main(String[] args) {
        
        int[] arr = new int[3];
        arr[0]=-1;
        arr[1]=-3;
        arr[2]=9;
        int max = max(arr);
        System.out.println(max);
        
    }
    
}



下面提供了更好的思路:

http://redfish88.github.io/

编程之美(一):求连续子数组的最大和

最近看了不少算法相关的题目,打算把这些题目整理出来做一个系列,借用一下CSDN上JULY的标题吧

输入一个整形数组,数组里有正数也有负数。

数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。

求所有子数组的和的最大值。要求时间复杂度为O(n)

e.g. 数组[1, -2, 3, 10, -4, 7, 2, -5] 和最大字数组为 3, 10, -4, 7, 2

如果没有时间复杂度的要求或许这个题可以有很多方法,但是有了时间复杂度的要求,就不能按照穷举所有子数组的方法来算了,可以来分析一下这个题目: 从第一个元素开始加,每加一次之后就要比较、记录一下最大和,如果加到某个元素的时候子数组的和为负数了,那就要放弃之前所有元素相加之和,然后从下个元素开始重新开始计算子数组的和。拿上面那个数组来表示summax的值的线性变化的话就是

sum:    1   -1   3   13    9    16    18    13
max:    1    1   3   13    13   16    18    18

最后返回max就是 18

用java 来实现的话就是

public static int maxSum(int[] arr){
    int sum = 0;
    int max = 0;
    for(int i=0;i < arr.length; i++){
         if(sum < 0)
            sum = arr[i];
         else
            sum += arr[i];
         if(max < sum)
            max = sum;          
    }
    return max;
}

这样看来思路还是很清晰的,代码也不怎么复杂,最主要的是只对数组进行一次循环,也就是时间复杂度为O(N),下面来一个python版本的

a = [1, -2, 3, 10, -4, 7, 2, -5]
result = 0
sum  = a[i]
for i in xrange(len(a)-1):
    sum = max(a[i+1],sum+a[i+1])
    result = max(sum,result)

这个思路更牛,这是利用了ACM中的DP思路,据说这是DP中最简单的一类题了,(ーー゛) 说一下DP的思想: 对于列表中任何第i+1个元素,只有2种选择,作为一个新子数组的第一个元素,或者加入到前面的数组,result为已找到的最大子数组的和 这个思路是不是让你眼前一亮的感觉?真是太简洁了,动态规划(dynamic programing)的思路我这是第一次接触到,感触不小,大学没好好学,现在得补上啊

PS:DP的思想可以解决很多面试题中压轴的算法题,所以数量掌握DP还是很有必要的,以后会继续出几个利用DP去解决的算法题



                                     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值