机器学习算法的常用评价指标

实际应用

实际问题描述

1) 算法1(产品1)的检测结果:检测出“男生”人数82人,其中78人为男生,4人其实是女生;

2)算法2(产品2)的检测结果:检测出“男生”人数88人,其中80人为男生,8人其实是女生;

3)经过人工检测,视频中实际准确的总人数为100人,其中男生80人,女生20人。

请问算法1和算法2的“查准率”“查全率”“F1-score”等分别是多少?你认为哪个更优秀?

  • 混淆矩阵:

算法一:

真实情况预测结果
782
416
算法二:
真实情况预测结果
782
416
计算查准率,查全率,F1-score

算法一:
查准率:
P = 78 78 + 2 = 0.975 P=\frac{78}{78+2}=0.975 P=78+278=0.975
查全率:
P = 78 78 + 4 = 0.9512 P=\frac{78}{78+4}=0.9512 P=78+478=0.9512
F1-score:
P = 78 ∗ 2 100 + 78 − 16 = 0.963 P=\frac{78*2}{100+78-16}=0.963 P=100+7816782=0.963
算法二:
查准率:
P = 80 80 + 0 = 0.1 P=\frac{80}{80+0}=0.1 P=80+080=0.1
查全率:
P = 80 80 + 8 = 0.91 P=\frac{80}{80+8}=0.91 P=80+880=0.91
F1-score:
P = 80 ∗ 2 100 + 80 − 12 = 0.952 P=\frac{80*2}{100+80-12}=0.952 P=100+8012802=0.952

从查准率评价指标来看,算法2都要优于算法1,从查全率和F1度量评价指标来看,算法1都要优于算法2。总的来说,算法2更好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值