- 博客(40)
- 收藏
- 关注
原创 07 字符串
*字符串的左旋转操作是把字符串前面的若干个字符转移到字符串的尾部。返回的结果字符串中,单词间应当仅用单个空格分隔,且不包含任何额外的空格。返回的结果字符串中,单词间应当仅用单个空格分隔,且不包含任何额外的空格。给定一个字符串 s 和一个整数 k,从字符串开头算起,每计数至 2k 个字符,就反转这 2k 字符中的前 k 个字符。将前k个字符看成一个单词,后面的字符看成一个单词,即可类比151的解法。但是在该题中,可以看成是一个空格元素替换成“%20”三个元素,因此会存在一个位置赋值三个元素的情况,
2023-04-03 21:06:59
716
原创 03 滑动窗口
● 需要双层循环对数组进行遍历的题目可以考虑使用滑动数组法● 滑动窗口思想其实是对快慢双指针解决某类问题的改进对应题目类型:1. 求解数组中连续的元素值满足某条件的连续最短子数组
2023-03-02 16:13:49
227
原创 02 双指针
双指针对应算法题目整理,题目类型:● 需要双层循环遍历数组的,可以考虑使用双指针方法● 双指针有些是针对一个列表的问题定义两个指针;有些是对两个列表的问题,每个列表分别定义一个指针● 双指针法(快慢指针法)在数组和链表的操作中是非常常见的,很多考察数组和链表操作的面试题,都使用双指针法。● 双指针法可以将时间复杂度降低一个数量级
2023-03-02 11:13:10
203
原创 no declaration can be found for element ‘mvc:view-controller解决方案
配置SpringMVC配置文件时,开启视图控制器但是提示no declaration can be found for element 'mvc:view-controller"应该是命名空间的问题,找不到对应的元素。
2023-02-09 22:02:34
256
原创 web.xml文件springframework.web.servlet.DispatcherServlet‘ is not assignable to javax.servlet.Servlet爆红
springframework.web.servlet.DispatcherServlet' is not assignable to javax.servlet.Servlet
2023-01-31 17:44:50
619
1
原创 01 二分查找
二分查找是基于有序序列的查找算法。每次查找当前区间的中间位置的元素,判断其与待查找元素的大小。然后,根据大小移动区间的左右端点。二分查找的好处在于每次可以去除掉一半的元素,使其时间复杂度为O(logn)。
2022-11-07 17:23:45
566
原创 计算机图形学基础2——光栅化
光栅化,也就是将多边形拆成不同的像素,最终实现将图像绘制在屏幕上。一般选择三角形作为计算机图形学中的基本图像形状,MVP变换+视口变换之后就可以得到每个三角形网格在屏幕上的顶点坐标 ,接下来的操作就是将三角形变成真正的像素。......
2022-07-06 11:14:34
3488
转载 目标检测中的Bounding Box Regeression Loss总结
目标检测回归损失函数:SmoothL1,IoU,GIoU,DIoU,CIoU Loss
2022-06-05 22:14:48
203
原创 Transformer模型架构及PyTorch源码详解(基于Attention is All You Need)
模型架构Encoder:N个block组成,每个block由一个自注意层和+一个FFN层组成Decoder:N个block组成,每个block由一个masked自注意层+交叉注意层+FFN层组成交叉注意层——q来自decoder;k,v来自encoder的输出位置编码:位置编码会随着残差计算向后传播源码有五个相关类:TransformerTransformerEncoderTransformerDecoderTransformerEncoderLayerTransformer
2022-04-24 18:59:09
4011
原创 如何理解注意力机制
如何理解注意力机制b站视频讲解-5min深度学习其实就是想学习一个模型可以用于实现 output=f(input)output=f(input)output=f(input)注意力机制的目的就是对所有的输入向量执行简单的线性加权,所以需要训练模型学习最优的权重值 α,但是,实际情况中我们不能简单的学习权重,因为输入的向量的长度是可变的,所以需要求解的权重参数 α 的数目也因此是可变的。此外,对于权重的值,有一个限制,需要进行归一化处理。(也就是α的和应该等于1)。因此,为了得到权重,注意
2022-04-24 12:25:26
5200
原创 机器学习4——Logistics回归
这里写目录标题Logistics回归是什么前言Logistics回归公式Logistics回归实现二分类问题Logistics回归实现病马的分类问题(二分类)处理流程:数据预处理:处理数据集中的缺失值代码实现时的一些注意事项Logistics回归是什么前言回归: 利用直线对数据点进行拟合的过程称为回归Logistics回归的主要思想: 根据现有的数据对分类边界线建立回归公式,以此进行分类。“回归”一词其实就是表示要找到该分类边界线的最佳参数。寻找最佳参数的过程采用最优化算法。
2022-03-08 15:31:55
2165
原创 机器学习3——朴素贝叶斯(基于概率论的分类方法)
文章目录贝叶斯公式条件概率全概率公式贝叶斯公式先验概率、后验概率朴素贝叶斯贝叶斯公式条件概率事件(结果):A原因(条件):B公式:P(B∣A)=P(AB)P(A) P(B|A)=\frac{P(AB)}{P(A)}P(B∣A)=P(A)P(AB)变形:P(AB)=P(B∣A)P(A)=P(A∣B)P(B)P(AB)=P(B|A)P(A)=P(A|B)P(B)P(AB)=P(B∣A)P(A)=P(A∣B)P(B)多事件的条件概率公式:P(A1A2A3A4A5)=P(A1)P(A2∣
2022-03-03 19:30:01
1174
原创 机器学习2——决策树
信息熵(熵)参考链接1参考链接2熵常用来作为一个集合的信息的量化指标。进一步可以作为一个系统的量化指标或者参数选择的依据。熵越大代表集合信息的不确定程度越大。(不确定程度与随机变量的概率分布有关,概率分布越均匀,不确定程度越大)公式X表示随机变量,H表示熵,p(x)表示事件x发生的概率。且,0log(0)=0。当log函数以2为底时,熵的单位是比特(bit)当数据集中值含有一类数据时,数据的纯度最高,则熵最小,E=0为何要使用上述公式计算熵呢?因为熵需要满足以下条件:单调性,发生概
2022-02-26 17:49:02
522
原创 机器学习1——K-近邻算法
算法概述工作原理:给定一个样本数据集合,作为训练集,该数据集中每条数据都知道其对应的类别标签。输入一个没有标签的新数据,希望根据训练集的样本数据判断该输入数据的类别。求解思想如下:将输入数据与样本集中的所有数据计算特征距离(相似度),根据距离进行排序,选择距离最近的前k个样本,将该k个样本中出现次数最多的类别作为输入数据的类别。算法特点K近邻算法无需训练,直接计算特征距离即可优点:对异常值不敏感,精度高,没有假设条件缺点:计算复杂度高、空间复杂度高...
2022-02-25 11:07:14
152
原创 numpy.sum()函数axis参数
总是记不住这个参数,这次写下来!参考链接numpy.sum(arr, axis=None, dtype=None, out=None, keepdims=False)arr:要进行求和计算的arrayaxis:进行求和计算的轴keepdims:求和计算之后是否保持原来的维度,默认false以上述a为例,a为三维数组,因此,axis可以取值0,1,1没有axis参数默认是对整个array求和,最终结果是一个数值sum(a)输出 axis=0sum(a,axis=0)===&
2022-02-20 18:48:02
844
原创 numpy.tile
参考链接Numpy.tile()函数函数形式: tile(A,rep)功能:重复A的各个维度参数类型:A: Array类的都可以rep:A沿着各个维度重复的次数,类型可以是整型或者元组最终的结果的维度:max(A.ndim,rep.length)输出结果分三种情况进行介绍:1、A.ndim=rep.length直接按照rep中元素的顺序,由外至内分别对A中的各个维度按照rep中的数值进行重复,rep中的数值代表重复次数。np.tile([1,2],2)输出:array([1,
2022-02-19 01:17:42
634
原创 VOC2012数据集
参考链接VOC2012数据集有多种用途,里面的数据有些可以用于分割、动作识别、等。有二十个类别:Person:personAnimal: bird, cat, cow, dog, horse, sheepVehicle:aeroplane, bicycle, boat, bus, car, motorbike, trainIndoor: bottle, chair, dining table, potted plant, sofa, tv/monitor主要有四个大类别,分别是人、常见动物、交
2021-12-05 21:45:28
2438
原创 Self-Attention详解
文章目录Sequence数据的处理Sequence Labeling(输入和输出的大小一样)Self-Attention内部机理如何求解b?Multi-head Self-AttentionPositional EncodingSelf-Attention for ImageSelf-Attention v.s. CNNSelf-Attention v.s. RNNSequence数据的处理Self-Attention是用来处理Sequence数据的。输入是Vector Set(Sequenc
2021-11-24 14:38:38
9412
原创 标签平滑 Label Smoothing
it=sigmoid(Wiixt+bii+Whiht−1+bhi) ft=sigmoid(Wifxt+bif+Whfht−1+bhf) ot=sigmoid(Wioxt+bio+Whoht−1+bho) gt=tanh(Wigxt+big+Whght−1+bhg) ct=ftct−1+itgt ht=ot∗tanh(ct)weightihl[k] \begin{aligned} i_t &= sigmoid(W_{ii}x_t+b_{ii}+W_
2021-11-04 21:13:43
1045
原创 算法性能评价指标概括
这里写目录标题目标检测算法IoU交并比分类问题预备知识:TP,TP,FP,FN准确率(Accurancy)精确率(Precision)召回率(Recall)F-Score平均正确率Average Precision, APROC曲线AUC值RP曲线目标检测算法IoU交并比概念介绍参考链接IoU 的全称为交并比(Intersection over Union), 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值。如何计算IoU呢?我们首先需要计算交集,并集通过两个边框的面积的和减
2021-11-02 21:18:06
2547
原创 RCNN系列
这里写目录标题R-CNNbounding-box regressionFast R-CNNROI PoolingFaster R-CNNConv LayersRegion Proposal Network(RPN)FPNR-CNNR-CNN的思想很简单就是:region proposal与CNN相结合。Region proposal:R-CNN采用“选择搜索”策略进行区域提取。会选择2000个ROIs(Region Proposal of Interest)特征提取:使用CNN对每个ROI进行特
2021-11-02 17:16:36
379
原创 类别不平衡问题
这里写目录标题类别不平衡问题解决方法1、再缩放2、欠采样(undersampling)3、过采样(oversampling)Hard Negative MiningFocal Loss类别不平衡问题训练数据中某些类别的样本数量极多,而有些类别的样本数量极少,就是所谓的类不平衡(class-imbalance)问题。比如说一个二分类问题,1000个训练样本,比较理想的情况是正类、负类样本的数量相差不多;而如果正类样本有995个、负类样本仅5个,就意味着存在类不平衡。在后文中,把样本数量过少的类别称
2021-10-24 13:55:32
2959
原创 Transformer概述
本文是根据台大李宏毅教授网课整理,主要是记笔记以供自己复习。这里写目录标题Transformer是什么应用Seq2Seq架构详解EncoderDecoderAutoregressive(AT)Non-autoregressive(NAT)训练exposure bias训练Seq2Seq Model的Tips1、Copy Mechanism复制机制2、Beam SearchTransformer是什么Transformer其实就是一个Seq2Seq Model(输入是一个序列输出也是一个序列但是长度由
2021-10-23 23:51:38
1800
原创 CNN的理解以及可视化
这里写自定义目录标题CNN的可视化理解第一个卷积层的可视化最后一层的可视化中间层的可视化擦除激活图显著图Saliency MapCNN的可视化理解第一个卷积层的可视化可视化第一层的卷积核:可以看到卷积核中更多的是一些图像的边缘信息(轮廓信息),因此,第一层的卷积核可以提取一些图像的轮廓信息。为什么要可视化卷积核:目的就是我们想要研究每一层卷积层到底提取的是图像的什么信息。通过可视化卷积核我们发现,卷积核是一些图像轮廓信息,所以我们可以知道,哦~原来卷积神经网络第一层提取了一些图像的轮廓信息。
2021-10-23 17:14:22
759
原创 Oracle数据库02异常
异常什么是异常?变异异常运行异常异常是如何触发的?发生Oracle错误时使用raise语句显式触发如何处理异常?用处理机截获在调用环境中传播异常declare v_ename emp.ename%type; v_empno number(4):=736;begin select ename into v_ename fr...
2020-04-20 10:20:28
499
原创 Oracle数据库01游标
游标PL/SQL使用select仅可查询一行信息,所以对于多行信息的查询引入了游标。定义:是在内存中开辟的一小块工作区,在其中存放select语句的查询结果。分类:显示游标:由程序员显示说明及控制,用于从表中取出多行数据,并将多行数据一行一行单独处理。隐式游标:PL/SQL隐式建立并自动管理这些游标,无需显示定义。隐式游标可以使用游标属性从最近执行的SQL语句中获取信息。...
2020-04-20 10:17:41
280
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人