基于LangChain构建一个简单的Agent代理

摘要:本文说明如何基于LangChain构建一个简单的Agent代理;使用OpenAi模型和TAVILY搜索。

该Agent代理具备读取历史信息的能力。

在介绍之前首先说明如何在Pycharm中配置代理。这样就可以使用LangSmith来进行追踪和TAVILY来搜索。

Pycharm打开,依次点积File,Settings,Appearance&behavior、System settings、HTTP Proxy,选择Manual proxy configuration,选择HTTP,以我为例,我挂着clash小猫,打开电脑网络设置的代理。

将IP地址、端口、下面的文本框分别粘贴复制到刚才打开的Pycharm中的相应地址,点击check connection,输入谷歌网址进行测试。测试成功即可。

上面介绍完了如何在Pycharm中使用代理,下面进入正题。根据我当前的理解,agent的工作流程是

  • 接收输入:代理接收用户的输入消息,并开始处理。
  • 启动代理链:代理链启动,准备处理输入数据。
  • 调用工具或服务ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值