使用 LCEL 构建简单的LLM应用程序

摘要:本文是对自己学习基于LangChain学习LLM开发的记录,根据LangChain官网使用LCEL构建了一个简单的LLM应用程序。

1.获取各个LLM模型的api。比如OPENAI、讯飞星火大模型等。本文使用讯飞星火大模型进行开发。使用OPENAI的api显示超额,但是明明有18美元的余额,如果读者知道的话请解答。

获取讯飞星火大模型的api本文不再赘述。

2.本文使用PyCharm进行开发。anaconda配置虚拟环境

conda create -n llm python=3.9

3.接下来是对项目的说明。

第一步

创建提示模板

system_template = "Translate the following into {language}:"
prompt_template = ChatPromptTemplate.from_messages([
    ('system', system_template),
    ('user', '{text}')
])

第二步

创建调用的模型

SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'

SPARKAI_APP_ID = ''
SPARKAI_API_SECRET = ''
SPARKAI_API_KEY = ''

SPARKAI_DOMAIN = 'generalv3.5'

model = ChatSparkLLM(
    spark_app_id=SPARKAI_APP_ID, spark_api_key=SPARKAI_API_KEY, spark_api_secret=SPARKAI_API_SECRET
)

其中 SPARKAI_APP_ID, SPARKAI_API_SECRET, SPARK_API_KEY 可以在讯飞星火大模型控制台获取api后得知。

第三步

创建解析器

parser = StrOutputParser()

解析器的作用是让调用大模型得到的输出更便于阅读。(本人刚开始学习的浅显见解)

第四步 

创建链(链在一起)

chain = prompt_template | model | parser

第五步

FAST APP 的app定义 

app = FastAPI(
  title="LangChain Server",
  version="1.0",
  description="A simple API server using LangChain's Runnable interfaces",
)

第六步

添加链路

add_routes(
    app,
    chain,
    path="/chain",
)

第七步

运行!

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8000)

下面是最后的运行效果截图

访问地址是localhost:8000/chain/playground/ 别输错啦!

有一个问题希望看到的大佬解答

os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()'''

这是根据官网的说明调用LANGSMITH查看后台数据,但是我运行这段的时候没有结果就好像无法连接一样,但是我使用了clash小猫,望解答!

下面是整个代码

#!/usr/bin/env python
from typing import List

from fastapi import FastAPI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.chat_models import ChatSparkLLM
from langserve import add_routes

# 1. Create prompt template
system_template = "Translate the following into {language}:"
prompt_template = ChatPromptTemplate.from_messages([
    ('system', system_template),
    ('user', '{text}')
])

# 2. Create model
SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'

SPARKAI_APP_ID = '7275269b'
SPARKAI_API_SECRET = 'ZmQ0NTRjYWYxZjExMjNiODY1ZGU1ZGQ3'
SPARKAI_API_KEY = '4794036911ddff294d676d6567f1daac'

SPARKAI_DOMAIN = 'generalv3.5'

model = ChatSparkLLM(
    spark_app_id=SPARKAI_APP_ID, spark_api_key=SPARKAI_API_KEY, spark_api_secret=SPARKAI_API_SECRET
)

# 3. Create parser
parser = StrOutputParser()

# 4. Create chain
chain = prompt_template | model | parser


# 4. App definition
app = FastAPI(
  title="LangChain Server",
  version="1.0",
  description="A simple API server using LangChain's Runnable interfaces",
)

# 5. Adding chain route

add_routes(
    app,
    chain,
    path="/chain",
)

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8000)

以上就是我根据Langchain官网构建的第一个简单的LLM模型,作为我学习LLM开发的记录的第一篇文章,有任何不对的地方欢迎指正!

### 构建LangChain链的方法 在LangChain框架内创建链条涉及定义一系列可执行的任务(runnables),这些任务可以按顺序或并行方式运行。为了实现这一点,开发者需先理解基本的概念[^1]。 #### 定义Runnable对象 每个`Runnable`代表一个独立的操作单元,比如调用大语言模型(LLM),处理输入数据或是解析输出结果。通过组合不同的`Runnable`实例,能够形成复杂的工作流逻辑。 ```python from langchain.runnable import RunnableLambda # 创建简单的lambda函数作为runnable add_one = RunnableLambda(lambda x: {"result": x + 1}) ``` #### 使用表达式语言(LCEL) 除了直接编写Python代码外,还可以采用专门设计用于描述操作序列的语言——LangChain表达式语言(LCEL)[^3]。这使得配置更加灵活,并允许非编程人员也能参与到工作流的设计当中。 ```json { "type": "sequence", "steps": [ { "name": "step_0", "action": "prompt_template", "template": "What's the weather like today?" }, { "name": "step_1", "action": "call_model" } ] } ``` #### 组合Runnables成Chain 一旦有了单独的`Runnable`组件之后,就可以按照需求把它们串联起来构成一条完整的`Chain`。这里展示了一个简单例子,其中包含了两个步骤:首先是格式化提示词模板,其次是发送给LLM获取响应。 ```python from langchain.chains import SequentialChain from langchain.prompts import PromptTemplate from langchain.llms.base import BaseLanguageModel llm = ... # 初始化具体的LLM实例 weather_chain = SequentialChain( steps=[ PromptTemplate.from_template("Tell me about {location}'s weather"), llm, ], input_variables=["location"], output_key="forecast" ) ``` 上述过程展示了如何利用LangChain中的核心特性来高效地链接多个动作,从而简化应用程序开发流程的同时提高了系统的可维护性和扩展性[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值