目录
文档含项目技术介绍、E-R图、数据字典、项目功能介绍与截图等
数据库表有注释,可以导出数据字典及更新数据库时间,欢迎交流学习
课题背景:
随着互联网的普及和发展,大量的财经新闻以文本的形式在网络中传播。这些新闻中包含了丰富的关于金融市场、公司动态、政策法规等方面的信息。然而,对于个人和企业来说,从大量的财经新闻中获取有价值的信息并进行有效的分析和利用是一项具有挑战性的任务。因此,运用文本挖掘技术对财经新闻进行自动化处理和分析具有重要的现实意义。
课题目的:
本课题旨在利用Python语言和相关文本挖掘技术对财经新闻进行自动化处理和分析,通过提取新闻中的关键信息、进行情感分析和趋势预测等,帮助用户更好地理解和利用财经新闻。
课题意义:
1. 提高信息获取效率:通过自动化处理和分析财经新闻,可以帮助用户快速获取和理解新闻中的关键信息,提高信息获取的效率。
2. 情感分析:通过对财经新闻进行情感分析,可以了解市场和公众对某一事件或公司的态度和情绪,为投资决策提供参考。
3. 趋势预测:通过对财经新闻的分析和挖掘,可以预测市场趋势和潜在机会,为投资决策提供依据。
4. 数据可视化:通过将分析结果以可视化的形式展示,可以更直观地展示市场动态和趋势,帮助用户更好地理解财经新闻。
5. 促进财经新闻研究:本课题的研究将推动财经新闻研究的进一步发展,为财经新闻的自动化处理和分析提供新的思路和方法。
6. 丰富Python应用领域:本课题将Python应用于财经新闻的文本挖掘和分析,进一步丰富了Python在文本挖掘和分析领域的应用。
一、整体目录(示范):
文档含项目技术介绍、E-R图、数据字典、项目功能介绍与截图等
二、运行截图
三、代码部分(示范):
注册较验代码:
// 注册
async register() {
if((!this.ruleForm.yonghuzhanghao) && `yonghu