CUDA10.2安装+pytorch1.7.1安装+torchvision0.8.2安装 + cudnn安装(深度学习GPU加速)

18 篇文章 1 订阅
6 篇文章 1 订阅

1、CUDA

首先根据显卡下载适用的CUDAhttps://blog.csdn.net/java_pythons/article/details/114659922

win+r.输入cmd打开终端输入:nvcc -V可以查看自己的cuda版本。
在这里插入图片描述

2、CUDNN

cuda10.2安装好,接下来是cudnn
下载cudnn,链接:https://developer.nvidia.com/rdp/cudnn-download
在这里插入图片描述
找到对应版本下载。
下载解压后得到一个cuda文件夹,这个文件夹里面有3个文件夹
在这里插入图片描述
把里面的文件复制粘贴到cuda安装目录的对应文件夹下
不知道cuda安装在哪个目录可以用 set cuda查看。
在这里插入图片描述
复制完成的bin目录(include文件夹也是如此复制,在此不再展示)
在这里插入图片描述
复制完成的lib->x64目录
在这里插入图片描述
接下来检测cudnn是否成功。
win+r->cmd打开终端,进入cuda的安装目录,找到extras文件下的demo_suite文件夹,运行bandwidthTest.exe
在这里插入图片描述
通过,没问题。

再运行下 deviceQuery.exe 文件。
在这里插入图片描述

3、安装pytorch

cuda跟cudnn准备完毕,该安装pytorch了,下载链接https://download.pytorch.org/whl/torch_stable.html
这个版本很好看,cu102表示就是cuda10.2的意思,cp38表示python3.8的意思,然后win跟linux表示不同系统然后1.7.1就是版本。上图里面就是pytorch版本1.7.1,torchvision版本0.8.2。
在这里插入图片描述
在这里插入图片描述
激活虚拟环境:

conda activate torch

在这里插入图片描述

在conda的虚拟环境下进入刚才下载完成的目录(cd 下载目录)。
在这里插入图片描述

pip3 install “刚才下载的文件名”(pip3 install torch-1.7.1-cp38-cp38-win_amd64.whl

在这里插入图片描述
等待一会,成功安装(安装完先不要关闭,将要安装torchvision)
在这里插入图片描述

安装 torchvision

下载 torchvision0.8.2(https://download.pytorch.org/whl/torch_stable.html在这里插入图片描述
pip3 install “刚才下载的文件名”(pip3 install torchvision-0.8.2-cp38-cp38-win_amd64.whl
在这里插入图片描述
在这里插入图片描述

输入python进入python环境。
导入torch:import torch
查看版本:
在这里插入图片描述
输出1.7.1。
安装完毕

在pycharm中使用torch请参考(https://blog.csdn.net/java_pythons/article/details/114943984?spm=1001.2014.3001.5502
在指定的torch环境中pip安装模块请参考(https://blog.csdn.net/java_pythons/article/details/114966809

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值