理解
1.分割:二维平面上存在两类点,有多条线可以分割两类点,哪条线最优?
2.最优:所有点到直线的距离中找到最小值,使这个最小值最大化的那条线。
(即所有点到线A的距离中找到最短距离AL,再有所有点到线B的距离中找到最短距离BL,AL和BL谁更长则更优。
假设平面上只有两个点,是不是刚好就是两个点正中间且与两个点连线垂直的那条线呢?)
3.线性分割:就是用一条直线或一个平面可以进行分割。
4.非线性分割:比如画一个圆,圆里面的是一类,圆外面的是一类,也可以是曲线,多维的可以画个球或曲面。
5.求解:网上有很多的专业论述可能一时半会搞不清,咱们来个目测法:二维平面上有一堆红点和一堆黑点,找到距离最近的黑点和红点,取两点连线的中间点为a,画一条经过a点的直线适当旋转。或者找到距离次最近的红点和黑点,取两点连线的中间点为b点,连接a,b两点。不合适再找次次最近的。
实践
open cv上的一个例子
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include "opencv2/imgcodecs.hpp"
#include <opencv2/highgui.hpp>
#include <opencv2/ml.hpp>
using namespace cv;
using namespace cv::ml;
int main(int, char**)
{
int width = 512, height = 512;
Mat image = Mat::zeros(height, width, CV_8UC3);
int labels[4] = { 1, -1, -1, -1 };
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
Mat labelsMat(4, 1, CV_32SC1, labels);
Ptr<SVM> svm = SVM::create();
svm->setType(SVM::C_SVC);
svm->setKernel(SVM::LINEAR);
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));
svm->train(trainingDataMat, ROW_SAMPLE, labelsMat);
Vec3b green(0, 255, 0), blue(255, 0, 0);
for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(1, 2) << j, i);
float response = svm->predict(sampleMat);
if (response == 1)
image.at<Vec3b>(i, j) = green;
else if (response == -1)
image.at<Vec3b>(i, j) = blue;
}
int thickness = -1;
int lineType = 8;
circle(image, Point(501, 10), 5, Scalar(0, 0, 0), thickness, lineType);
circle(image, Point(255, 10), 5, Scalar(255, 255, 255), thickness, lineType);
circle(image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType);
circle(image, Point(10, 501), 5, Scalar(255, 255, 255), thickness, lineType);
thickness = 2;
lineType = 8;
Mat sv = svm->getUncompressedSupportVectors();
for (int i = 0; i < sv.rows; ++i)
{
const float* v = sv.ptr<float>(i);
circle(image, Point((int)v[0], (int)v[1]), 6, Scalar(128, 128, 128), thickness, lineType);
}
imshow("SVM Simple Example", image); // show it to the user
waitKey(0);
}
参考https://docs.opencv.org/master/d1/d73/tutorial_introduction_to_svm.html