高效读取大文件,再也不用担心 OOM 了!

本文讲述了在处理大文件时遇到的OOM问题,以及如何通过逐行读取(BufferedReader、Apache Commons IO、Java8 Stream)、并发读取(逐行批次打包、大文件拆分)等方式避免内存溢出,提高效率。通过实例代码展示了解决方案,并提到Spring Batch在批量处理数据中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

每天早上七点三十,准时推送干货

Photo by Luisa Brimble on Unsplash

最近阿粉接到一个需求,需要从文件读取数据,然后经过业务处理之后存储到数据库中。这个需求,说实话不是很难,阿粉很快完成了第一个版本。

内存读取

第一个版本,阿粉采用内存读取的方式,所有的数据首先读读取到内存中,程序代码如下:

Stopwatch stopwatch = Stopwatch.createStarted();
// 将全部行数读取的内存中
List<String> lines = FileUtils.readLines(new File("temp/test.txt"), Charset.defaultCharset());
for (String line : lines) {
    // pass
}
stopwatch.stop();
System.out.println("read all lines spend " + stopwatch.elapsed(TimeUnit.SECONDS) + " s");
// 计算内存占用
logMemory();

logMemory方法如下:

MemoryMXBean memoryMXBean = ManagementFactory.getMemoryMXBean();
//堆内存使用情况
MemoryUsage memoryUsage = memoryMXBean.getHeapMemoryUsage();
//初始的总内存
long totalMemorySize = memoryUsage.getInit();
//已使用的内存
long usedMemorySize = memoryUsage.getUsed();


System.out.println("Total Memory: " + totalMemorySize / (1024 * 1024) + " Mb");
System.out.println("Free Memory: " + usedMemorySize / (1024 * 1024) + " Mb");

上述程序中,阿粉使用 Apache Common-Io 开源第三方库,FileUtils#readLines将会把文件中所有内容,全部读取到内存中。

这个程序简单测试并没有什么问题,但是等拿到真正的数据文件,运行程序,很快程序发生了 OOM

之所以会发生 OOM,主要原因是因为这个数据文件太大。假设上面测试文件 test.txt总共有 200W 行数据,文件大小为:740MB。

通过上述程序读取到内存之后,在我的电脑上内存占用情况如下:

可以看到一个实际大小为 700 多 M 的文件,读到内存中占用内存量为 1.5G 之多。而我之前的程序,虚拟机设置内存大小只有 1G,所以程序发生了 OOM。

当然这里最简单的办法就是加内存呗,将虚拟机内存设置到 2G,甚至更多。不过机器内存始终有限,如果文件更大,还是没有办法全部都加载到内存。

不过仔细一想真的需要将全部数据一次性加载到内存中?

很显然,不需要!

在上述的场景中,我们将数据到加载内存中,最后不还是一条条处理数据。

所以下面我们将读取方式修改成逐行读取。

逐行读取

逐行读取的方式比较多,这里阿粉主要介绍两种方式:

  • BufferReader

  • Apache Commons

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值