rounding to an arbitrary number of significant digits

2 篇文章 0 订阅

转:http://stackoverflow.com/questions/202302/rounding-to-an-arbitrary-number-of-significant-digits

Q:

How can you round any number (not just integers > 0) to N significant digits?

For example, if I want to round to 3 significant digits, I'm looking for a formula that could take:

1,239,451 and return 1,240,000

12.1257 and return 12.1

.0681 and return .0681

5 and return 5

Naturally the algorithm should not be hard-coded to only handle N of 3, although that would be a start.

A:


15 Answers

up vote 82 down vote accepted

Here's the same code in Java without the 12.100000000000001 bug other answers have

I also removed repeated code, changed power to a type integer to prevent floating issues when n - d is done, and made the long intermediate more clear

The bug was caused by multiplying a large number with a small number. Instead I divide two numbers of similar size.

EDIT
Fixed more bugs. Added check for 0 as it would result in NaN. Made the function actually work with negative numbers (The original code doesn't handle negative numbers because a log of a negative number is a complex number)

public static double roundToSignificantFigures(double num, int n) {
    if(num == 0) {
        return 0;
    }

    final double d = Math.ceil(Math.log10(num < 0 ? -num: num));
    final int power = n - (int) d;

    final double magnitude = Math.pow(10, power);
    final long shifted = Math.round(num*magnitude);
    return shifted/magnitude;
}
share improve this answer
 
1 
Your code is indeed much nicer. –   Claudiu  Dec 14 '09 at 23:41
1 
Thanks for accepting my answer. I just realized my answer is more than a year after the question. This is one of the reasons why stackoverflow is so cool. You can find useful information! –   Pyrolistical  May 21 '10 at 22:45
1 
Note that this may fail slightly for values close to the round limit. For example rounding 1.255 to 3 significant digits should return 1.26 but returns 1.25. That is because 1.255 * 100.0 is 125.499999... But this is to be expected when working with doubles –   cquezel  Nov 22 '14 at 17:10 

SUMMARY:

double roundit(double num, double N)
{
    double d = log10(num);
    double power;
    if (num > 0)
    {
        d = ceil(d);
        power = -(d-N);
    }
    else
    {
        d = floor(d); 
        power = -(d-N);
    }

    return (int)(num * pow(10.0, power) + 0.5) * pow(10.0, -power);
}


So you need to find the decimal place of the first non-zero digit, then save the next N-1 digits, then round the Nth digit based on the rest.

We can use log to do the first.

log 1239451 = 6.09
log 12.1257 = 1.08
log 0.0681  = -1.16

So for numbers > 0, take the ceil of the log. For numbers < 0, take the floor of the log.

Now we have the digit d: 7 in the first case, 2 in the 2nd, -2 in the 3rd.

We have to round the (d-N)th digit. Something like:

double roundedrest = num * pow(10, -(d-N));

pow(1239451, -4) = 123.9451
pow(12.1257, 1)  = 121.257
pow(0.0681, 4)   = 681

Then do the standard rounding thing:

roundedrest = (int)(roundedrest + 0.5);

And undo the pow.

roundednum = pow(roundedrest, -(power))

Where power is the power calculated above.


About accuracy: Pyrolistical's answer is indeed closer to the real result. But note that you can't represent 12.1 exactly in any case. If you print the answers as follows:

System.out.println(new BigDecimal(n));

The answers are:

Pyro's: 12.0999999999999996447286321199499070644378662109375
Mine: 12.10000000000000142108547152020037174224853515625
Printing 12.1 directly: 12.0999999999999996447286321199499070644378662109375

So, use Pyro's answer!

share improve this answer
 
 
Had some minor bugs right when it was accepted, but it's fixed now. –   Claudiu  Oct 14 '08 at 19:01
1 
This algorithm seems prone to floating point errors. When implemented with JavaScript, I get: 0.06805 -> 0.06810000000000001 and 12.1 -> 12.100000000000001 –   Ates Goral  Oct 14 '08 at 19:30
1 
This code in Java produces 12.100000000000001 and this is using 64-bit doubles which can present 12.1 exactly. –   Pyrolistical  Oct 17 '09 at 0:00
4 
It doesn't matter if it's 64 bit or 128 bit. You can't represent the fraction 1/10 using a finite sum of powers of 2, and that's how floating point numbers are represented –   Claudiu  Oct 17 '09 at 17:02
2 
for those chiming in, basically Pyrolistical's answer is more precise than mine so that the floating point number printing algorithm prints '12.1' instead of '12.100000000000001'. his answer is better, even tho i was technically correct that you can't represent '12.1' exactly. –   Claudiu  Mar 6 '11 at 5:20

Here's a short and sweet JavaScript implementation:

function sigFigs(n, sig) {
    var mult = Math.pow(10, sig - Math.floor(Math.log(n) / Math.LN10) - 1);
    return Math.round(n * mult) / mult;
}

alert(sigFigs(1234567, 3)); // Gives 1230000
alert(sigFigs(0.06805, 3)); // Gives 0.0681
alert(sigFigs(5, 3)); // Gives 5
share improve this answer
 
 
but 12.1257 gives 12.126 –   Pyrolistical  Oct 17 '09 at 0:03
1 
Yes, that's valid rounding. –   Ates Goral  Oct 17 '09 at 22:47
 
Nice answer Ates. Perhaps add a trigger to return 0 if n==0 :) –   sscirrus  Oct 22 '11 at 1:56
2 
PHP port for the lazy: gist.github.com/anonymous/9922298 –   Mahn  Apr 1 '14 at 20:20

Isn't the "short and sweet" JavaScript implementation

Number(n).toPrecision(sig)

e.g.

alert(Number(12345).toPrecision(3)

?

Sorry, I'm not being facetious here, it's just that using the "roundit" function from Claudiu and the .toPrecision in JavaScript gives me different results but only in the rounding of the last digit.

JavaScript:

Number(8.14301).toPrecision(4) == 8.143

.NET

roundit(8.14301,4) == 8.144
share improve this answer
 
 
Number(814301).toPrecision(4) == "8.143e+5". Generally not what you want if you're showing this to users. –   Zaz  May 4 at 22:48 
 
Very true Josh yes, I would generally recommend .toPrecision() only for decimal numbers and the accepted answer (with edit) should be used/reviewed as per your individual requirements. –   Justin Wignall  May 5 at 19:53

Pyrolistical's (very nice!) solution still has an issue. The maximum double value in Java is on the order of 10^308, while the minimum value is on the order of 10^-324. Therefore, you can run into trouble when applying the function roundToSignificantFigures to something that's within a few powers of ten of Double.MIN_VALUE. For example, when you call

roundToSignificantFigures(1.234E-310, 3);

then the variable power will have the value 3 - (-309) = 312. Consequently, the variable magnitudewill become Infinity, and it's all garbage from then on out. Fortunately, this is not an insurmountable problem: it is only the factor magnitude that's overflowing. What really matters is the product num * magnitude, and that does not overflow. One way of resolving this is by breaking up the multiplication by the factor magintude into two steps:


 public static double roundToNumberOfSignificantDigits(double num, int n) {

    final double maxPowerOfTen = Math.floor(Math.log10(Double.MAX_VALUE));

    if(num == 0) {
        return 0;
    }

    final double d = Math.ceil(Math.log10(num < 0 ? -num: num));
    final int power = n - (int) d;

    double firstMagnitudeFactor = 1.0;
    double secondMagnitudeFactor = 1.0;
    if (power > maxPowerOfTen) {
        firstMagnitudeFactor = Math.pow(10.0, maxPowerOfTen);
        secondMagnitudeFactor = Math.pow(10.0, (double) power - maxPowerOfTen);
    } else {
        firstMagnitudeFactor = Math.pow(10.0, (double) power);
    }

    double toBeRounded = num * firstMagnitudeFactor;
    toBeRounded *= secondMagnitudeFactor;

    final long shifted = Math.round(toBeRounded);
    double rounded = ((double) shifted) / firstMagnitudeFactor;
    rounded /= secondMagnitudeFactor;
    return rounded;
}

share improve this answer
 
1 
Whoa, rounding at the edge of the universe! –   Pyrolistical  May 7 '12 at 18:30

How about this java solution :

double roundToSignificantFigure(double num, int precision){
 return new BigDecimal(num)
            .round(new MathContext(precision, RoundingMode.HALF_EVEN))
            .doubleValue(); 
}
share improve this answer
 
 
+1 clean and nice solution –   cetnar  Feb 4 '11 at 12:14

Here is a modified version of Ates' JavaScript that handles negative numbers.

function sigFigs(n, sig) {
    if ( n === 0 )
        return 0
    var mult = Math.pow(10,
        sig - Math.floor(Math.log(n < 0 ? -n: n) / Math.LN10) - 1);
    return Math.round(n * mult) / mult;
 }
share improve this answer
 

Have you tried just coding it up the way you'd do it by hand?

  1. Convert the number to a string
  2. Starting at the beginning of the string, count digits - leading zeroes aren't significant, everything else is.
  3. When you get to the "nth" digit, peek ahead at the next digit and if it's 5 or higher, round up.
  4. Replace all of the trailing digits with zeroes.
share improve this answer
 

[Corrected, 2009-10-26]

Essentially, for N significant fractional digits:

• Multiply the number by 10N
• Add 0.5
• Truncate the fraction digits (i.e., truncate the result into an integer)
• Divide by 10N

For N significant integral (non-fractional) digits:

• Divide the number by 10N
• Add 0.5
• Truncate the fraction digits (i.e., truncate the result into an integer)
• Multiply by 10N

You can do this on any calculator, for example, that has an "INT" (integer truncation) operator.

share improve this answer
 
 
Nope. Read the question again. 1239451 with 3 sig figs using your algorithm would incorrectly yield 123951 –  Pyrolistical  Oct 20 '09 at 18:06
 
Yep, I corrected it to distinguish between rounding to a fractional number of digits (to the right of the decimal point) versus an integral number of digits (to the left). –   David R Tribble  Oct 26 '09 at 21:53
/**
 * Set Significant Digits.
 * @param value value
 * @param digits digits
 * @return
 */
public static BigDecimal setSignificantDigits(BigDecimal value, int digits) {
    //# Start with the leftmost non-zero digit (e.g. the "1" in 1200, or the "2" in 0.0256).
    //# Keep n digits. Replace the rest with zeros.
    //# Round up by one if appropriate.
    int p = value.precision();
    int s = value.scale();
    if (p < digits) {
        value = value.setScale(s + digits - p); //, RoundingMode.HALF_UP
    }
    value = value.movePointRight(s).movePointLeft(p - digits).setScale(0, RoundingMode.HALF_UP)
        .movePointRight(p - digits).movePointLeft(s);
    s = (s > (p - digits)) ? (s - (p - digits)) : 0;
    return value.setScale(s);
}
share improve this answer
 

Here is Pyrolistical's (currently top answer) code in Visual Basic.NET, should anyone need it:

Public Shared Function roundToSignificantDigits(ByVal num As Double, ByVal n As Integer) As Double
    If (num = 0) Then
        Return 0
    End If

    Dim d As Double = Math.Ceiling(Math.Log10(If(num < 0, -num, num)))
    Dim power As Integer = n - CInt(d)
    Dim magnitude As Double = Math.Pow(10, power)
    Dim shifted As Double = Math.Round(num * magnitude)
    Return shifted / magnitude
End Function
share improve this answer
 

This came 5 years late, but though I'll share for others still having the same issue. I like it because it's simple and no calculations on the code side. See Built in methods for displaying Significant figures for more info.

This is if you just want to print it out.

public String toSignificantFiguresString(BigDecimal bd, int significantFigures){
    return String.format("%."+significantFigures+"G", bd);
}

This is if you want to convert it:

public BigDecimal toSignificantFigures(BigDecimal bd, int significantFigures){
    String s = String.format("%."+significantFigures+"G", bd);
    BigDecimal result = new BigDecimal(s);
    return result;
}

Here's an example of it in action:

BigDecimal bd = toSignificantFigures(BigDecimal.valueOf(0.0681), 2);
share improve this answer
 

This is one that I came up with in VB:

Function SF(n As Double, SigFigs As Integer)
    Dim l As Integer = n.ToString.Length
    n = n / 10 ^ (l - SigFigs)
    n = Math.Round(n)
    n = n * 10 ^ (l - SigFigs)
    Return n
End Function
share improve this answer
 

JavaScript:

Number( my_number.toPrecision(3) );

The Number function will change output of the form "8.143e+5" to "814300".

share improve this answer
 
public static double roundToSignificantDigits(double num, int n) {
    return Double.parseDouble(new java.util.Formatter().format("%." + (n - 1) + "e", num).toString());
}

This code uses the inbuilt formatting function which is turned to a rounding function




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值