Java算法-力扣leetcode-169. 多数元素

本文介绍了如何使用O(n)时间复杂度和O(1)空间复杂度的算法解决LeetCode169题——找出数组中的多数元素。通过遍历数组并动态调整元素计数,最后返回出现次数超过半数的元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

力扣leetcode-169. 多数元素

给定一个大小为 n **的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。

你可以假设数组是非空的,并且给定的数组总是存在多数元素。

示例 1:

输入: nums = [3,2,3]
输出: 3

示例 2:

输入: nums = [2,2,1,1,1,2,2]
输出: 2

提示:

  • n == nums.length
  • 1 <= n <= 5 * 104
  • -109 <= nums[i] <= 109

进阶: 尝试设计时间复杂度为 O(n)、空间复杂度为 O(1) 的算法解决此问题。

解法:

复杂度为 O(n)、空间复杂度为 O(1):
因为复杂度是O(n)所有只能遍历一遍,而且不能使用额外的数组空间

解法的思路是 不同的两个元素就舍弃掉,尽可能的舍弃,最终剩下的就全部是超过1/2的数字了

class Solution {
    public int majorityElement(int[] nums) {
        if(nums.length==1){
            return nums[0];
        }
        //sum标识当前元素存在的个数
        int sum = 1;
        //n表示当前剩余元素的值
        int n = nums[0];
        for(int i=1; i<nums.length; i++){
            if(sum==0){
                //当前元素0个了,n就是下一个元素
                n=nums[i];
            }
            if(nums[i] == n){
                //遇到相同元素的了,就个数加1
                sum++;
            }
            if(nums[i] != n){
                //遇到不同元素的了,就触发了消除
                sum--;
            }
        }
        return n;
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值